1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/STRUCTURE/reconstructFragmentProcessor.h>
#include <list>
#include <vector>
#include <BALL/KERNEL/PTE.h>
#include <BALL/SYSTEM/path.h>
#include <BALL/KERNEL/bond.h>
#include <BALL/KERNEL/forEach.h>
#include <BALL/MATHS/matrix44.h>
#include <BALL/DATATYPE/stringHashMap.h>
#include <BALL/STRUCTURE/fragmentDB.h>
#include <BALL/STRUCTURE/structureMapper.h>
using namespace std;
// #define BALL_DEBUG_RECONSTRUCTFRAGMENTPROCESSOR
#ifdef BALL_DEBUG_RECONSTRUCTFRAGMENTPROCESSOR
# define DEBUG(a) Log.info() << "ReconstructFragmentProcessor: " << a << std::endl;
#else
# define DEBUG(a)
#endif
namespace BALL
{
/////////////////////////////////////////////////////////////////
// ReconstructFragmentProcessor //
/////////////////////////////////////////////////////////////////
void ReconstructFragmentProcessor::setFragmentDB(const FragmentDB& db)
{
fragment_db_ = &const_cast<FragmentDB&>(db);
}
const FragmentDB* ReconstructFragmentProcessor::getFragmentDB() const
{
return fragment_db_;
}
/** Identify two reference atoms.
Performs a breadth-first search for two additional heavy atoms
starting from the center atom. These atoms are used as
anchor points for attaching the next atom.
*/
Triple<bool, const Atom*, const Atom*>
ReconstructFragmentProcessor::getTwoReferenceAtoms
(const Atom& ref_center_atom, const HashSet<const Atom*>& allowed)
{
Triple<bool, const Atom*, const Atom*> result(false, 0, 0);
// a hash set to remember all those atoms we have already visited
list<const Atom*> atom_list;
atom_list.push_back(&ref_center_atom);
// abort if we found the three first atoms (beyond the center atom)
// or we are running out of fresh atoms
list<const Atom*>::iterator current(atom_list.begin());
while ((atom_list.size() < 3) && (current != atom_list.end()))
{
Atom::BondConstIterator bond((*current)->beginBond());
for (; +bond; ++bond)
{
const Atom* next_atom = bond->getPartner(**current);
if (allowed.has(next_atom)
&& (find(atom_list.begin(), atom_list.end(), next_atom) == atom_list.end()))
{
atom_list.push_back(next_atom);
if (atom_list.size() > 2)
{
bond = (*current)->endBond();
break;
}
}
}
// try the bonds of the next atom in the list
current++;
}
// copy the two reference atoms to the result
// (omit the first atom, which is the center atom!)
result.first = (atom_list.size() == 3);
current = atom_list.begin();
current++;
if (current != atom_list.end())
{
result.second = *current;
current++;
}
if (current != atom_list.end())
{
result.third = *current;
}
return result;
}
// start function of ReconstructFragmentProcessor
// nothing important is done here
bool ReconstructFragmentProcessor::start()
{
inserted_atoms_.clear();
if (fragment_db_ == 0)
{
Log.error() << "ReconstructFragmentProcessor: no FragmentDB defined. "
<< "Use setFragmentDB() to associate a fragment database." << std::endl;
return false;
}
return true;
}
// Processor finish method
bool ReconstructFragmentProcessor::finish()
{
return true;
}
// Processor application method
Processor::Result ReconstructFragmentProcessor::operator () (Fragment& object)
{
// abort if the object is not a residue (only residues are
// contained in the fragment DB)
if (!RTTI::isKindOf<Residue>(&object))
{
return Processor::CONTINUE;
}
// cast the object to a residue
Residue& residue = dynamic_cast<Residue&>(object);
// get the reference fragment from the fragment DB
const Fragment* reference_fragment = fragment_db_->getReferenceFragment(residue);
// complain if no reference fragment could be found
if (reference_fragment == 0)
{
Log.warn() << "ReconstructFragmentProcessor: no reference fragment found for "
<< residue.getName() << ":" << residue.getID() << std::endl;
return Processor::CONTINUE;
}
// Reconstruct the atoms and count the number of new atoms.
// number_of_inserted_atoms_ += reconstructFragment(residue, *reference_fragment);
list<Atom*> inserted_atoms;
list<Atom*>::iterator it;
inserted_atoms = reconstructFragment(residue, *reference_fragment);
for (it = inserted_atoms.begin(); it != inserted_atoms.end(); ++it)
{
inserted_atoms_.push_back(*it);
}
// Next residue.
return Processor::CONTINUE;
}
ReconstructFragmentProcessor::ReconstructFragmentProcessor(const FragmentDB& db)
: fragment_db_(&db),
inserted_atoms_()
{
}
// copy constructor
ReconstructFragmentProcessor::ReconstructFragmentProcessor(const ReconstructFragmentProcessor& rfp)
: UnaryProcessor<Fragment>(rfp),
fragment_db_(rfp.fragment_db_),
inserted_atoms_(rfp.inserted_atoms_)
{
}
// default constructor
ReconstructFragmentProcessor::ReconstructFragmentProcessor()
: fragment_db_(0),
inserted_atoms_()
{
}
// destructor
ReconstructFragmentProcessor::~ReconstructFragmentProcessor()
{
fragment_db_ = 0;
}
list<Atom*>& ReconstructFragmentProcessor::getInsertedAtoms()
{
return inserted_atoms_;
}
// return the number of inserted atoms
Size ReconstructFragmentProcessor::getNumberOfInsertedAtoms() const
{
return inserted_atoms_.size();
}
list<Atom*> ReconstructFragmentProcessor::reconstructFragment
(Fragment& fragment, const Fragment& tplate)
{
// We count the number of atoms created.
Size number_of_inserted_atoms = 0;
list<Atom*> inserted_atoms;
// Get a copy of the atom names occurring in the current reference fragment....
StringHashMap<Atom*> name_to_atom;
AtomIterator it = fragment.beginAtom();
for (; +it; ++it)
{
name_to_atom.insert(pair<String, Atom*>(it->getName(), const_cast<Atom*>(&*it)));
DEBUG("inserting " << it->getName() << " = " << (void*)(&*it) << " into name_to_atom map. ")
}
// ...and remove the names of existing atoms.
// At the same time, we construct a hash map relating the atom names
// of the residues to the corresponding atom pointers.
HashMap<const Atom*, Atom*> tpl_to_res;
HashSet<const Atom*> transformed;
AtomConstIterator cit = tplate.beginAtom();
for (; +cit; ++cit)
{
if (name_to_atom.has(cit->getName()))
{
// remember that the coordinates of this one are correct
Atom* res_atom = name_to_atom[cit->getName()];
transformed.insert(&*cit);
tpl_to_res.insert(std::pair<const Atom*, Atom*>(&*cit, res_atom));
DEBUG("inserting " << (void*)&*cit << " = " << (void*)(res_atom) << " into tpl_to_res map. ")
}
else
{
// We create a copy of the existing atom and insert it into
// the residue. Coordinates are bogus, but we'll correct that
// later on.
Atom* new_atom = reinterpret_cast<Atom*>(cit->create(false));
fragment.insert(*new_atom);
tpl_to_res.insert(std::pair<const Atom*, Atom*>(&*cit, new_atom));
// update the atom count
number_of_inserted_atoms++;
inserted_atoms.push_back(new_atom);
DEBUG("creating atom " << (void*)(new_atom) << " for tpl atom " << cit->getName() << " (" << (void*)&*cit << ")")
}
}
// We've now made sure that all atoms of the tplate exist in the
// reconstructed residue as well (careful, not the other way round!)
// we can now start to adjust the atom coordinates.
// If no atoms were in common, there's not much we can do...
// Trivial solution: no atoms are actually matched to each
// other, so we just leave the coordinates the way they
// are (copy of the tpl coordinates) and return.
if (!transformed.isEmpty())
{
// Otherwise, we start adjusting coordinates
// We use a hash set for BFS
HashSet<const Atom*> visited;
list<const Atom*> stack;
stack.push_back(*transformed.begin());
while (!stack.empty())
{
const Atom* current = stack.front();
stack.erase(stack.begin());
visited.insert(current);
DEBUG("center is " << (void*)current << " (" << current->getFullName() << ") visited = "
<< (visited.has(current)) << " transformed = " << transformed.has(current)
<< " @ " << current->getPosition())
DEBUG("residue atom is @ " << tpl_to_res[current]->getPosition() << " (dist = "
<< tpl_to_res[current]->getPosition().getDistance(current->getPosition()) << ")")
for (Atom::BondConstIterator bond = current->beginBond(); +bond; ++ bond)
{
const Atom* next = bond->getPartner(*current);
DEBUG("examining " << (void*)next << " (" << next->getFullName() << ") visited = "
<< (visited.has(next)) << " transformed = " << transformed.has(next))
if (!visited.has(next))
{
stack.push_back(next);
visited.insert(next);
if (!transformed.has(next))
{
DEBUG("searching reference atoms for "<< next->getFullName())
Triple<bool, const Atom*, const Atom*> ref_atoms;
ref_atoms = getTwoReferenceAtoms(*current, transformed);
DEBUG("reference atoms: " << (ref_atoms.second == 0 ? String("-") : ref_atoms.second->getFullName())
<< " / " << (ref_atoms.third == 0 ? String("-") : ref_atoms.third->getFullName()))
Matrix4x4 T;
if (ref_atoms.first)
{
// we can map all three atoms, great!
DEBUG("mapping three atoms: " << tpl_to_res[current]->getFullName() << "/"
<< tpl_to_res[ref_atoms.second]->getFullName() << "/" << tpl_to_res[ref_atoms.third]->getFullName())
DEBUG("onto: " << current->getFullName() << "/"
<< ref_atoms.second->getFullName() << "/" << ref_atoms.third->getFullName())
DEBUG("from: " << tpl_to_res[current]->getPosition() << "/"
<< tpl_to_res[ref_atoms.second]->getPosition() << "/" << tpl_to_res[ref_atoms.third]->getPosition())
DEBUG("to: " << current->getPosition() << "/"
<< ref_atoms.second->getPosition() << "/" << ref_atoms.third->getPosition())
T = StructureMapper::matchPoints
(current->getPosition(), ref_atoms.second->getPosition(), ref_atoms.third->getPosition(),
tpl_to_res[current]->getPosition(),
tpl_to_res[ref_atoms.second]->getPosition(),
tpl_to_res[ref_atoms.third]->getPosition());
DEBUG("found two reference atoms, mapped with T =\n" << T)
}
else
{
// We could map the two center atoms only, which corresponds to
// a simple translation by the difference of the two atom positions.
T.setIdentity();
T.setTranslation(tpl_to_res[current]->getPosition() - current->getPosition());
DEBUG("translating by " << T)
}
// Transform the coordinates of the atom we're interest in
tpl_to_res[next]->setPosition(T * tpl_to_res[next]->getPosition());
// Remember that we already took care of that guy.
transformed.insert(next);
DEBUG(next->getFullName() << " is transformed: " << tpl_to_res[next]->getPosition() << "/" << next->getPosition())
DEBUG("distance = " << tpl_to_res[next]->getPosition().getDistance(next->getPosition()))
}
}
}
}
}
// Return the number of atoms created.
// return number_of_inserted_atoms;
return inserted_atoms;
}
} // namespace BALL
|