File: structureMapper.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (944 lines) | stat: -rw-r--r-- 26,396 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/STRUCTURE/structureMapper.h>

#include <BALL/STRUCTURE/geometricProperties.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/DATATYPE/hashGrid.h>
#include <BALL/MATHS/quaternion.h>


#include <stack>
#include <vector>
#include <map>

using namespace std;

namespace BALL
{

	/* Default constructor */
	StructureMapper::StructureMapper()
	{
	}

	/* Constructor */
	StructureMapper::StructureMapper(AtomContainer& A, AtomContainer& B)
	{
		set(A, B);
	}

	/** Destructor */
	StructureMapper::~StructureMapper()
	{
		A_ = 0;
		B_ = 0;
	}

	/* Assign the two objects to be mapped */
	void StructureMapper::set(AtomContainer & A, AtomContainer & B)
	{
		A_ = &A;
		B_ = &B;
	}


	Size StructureMapper::countFragments_(const AtomContainer & ac) const
	{
		Size number_of_mol_fragments = 0;

		AtomContainerConstIterator it;

		for (it = ac.beginAtomContainer(); +it; ++it)
		{
            if (RTTI::isKindOf<Fragment>(&*it))
			{
				number_of_mol_fragments++;
			}
		}

		return number_of_mol_fragments;
	}


	/* Calculate the root mean squared deviation */
	double StructureMapper::calculateRMSD()
	{
		// calculate bijection, if it is not already defined
		if (bijection_.size() == 0)
		{
			calculateDefaultBijection();
		}

		// Check whether we have to transform each coordinate first
		// (only if we have a transformation already defined which differs from the 
		// unity matrix).
		bool transform = (transformation_ != Matrix4x4::getIdentity());

		// for each pair in the bijection array, calculate square deviation for each 
		// coordinate set
		double square_deviation = 0;

		if (transform)
		{
			// Compute the RMSD we would get *after* applying the transformation.
			for(Size i = 0; i < bijection_.size(); i++)
			{
				const Vector3& r(transformation_ * bijection_[i].first->getPosition());
				square_deviation += r.getSquareDistance(bijection_[i].second->getPosition());
			}
		}
		else
		{
			// Compute the RMSD we have right now, as the transformation is just the
			// identity matrix.
			for(Size i = 0; i < bijection_.size(); i++)
			{
				const Vector3& r(bijection_[i].first->getPosition());
				square_deviation += r.getSquareDistance(bijection_[i].second->getPosition());
			}
		}

		// calculate mean square deviation
		square_deviation /=(double) bijection_.size();

		// return RMSD
		return sqrt(square_deviation);
	}

	/**	Calculate the root mean squared deviation given a AtomBijection
	*/
	// TODO: add possibility to compute a transformation
	double StructureMapper::calculateRMSD(const AtomBijection& new_bijection)
	{
		transformation_ = Matrix4x4::getIdentity();
		bijection_ = new_bijection;
		return calculateRMSD();
	}

	/* Calculate the transformation to map the first of two isomorphous
	   AtomContainer objects onto the second */
	bool StructureMapper::calculateTransformation()
	{
		// check whether both atom containers are defined
		if ((A_ == 0) ||(B_ == 0))
		{
			return false;
		}

		// check for same number of molecular fragments(or residues)
		if (countFragments_(*A_) != countFragments_(*B_))
		{
			return false;
		}

		return true;
	}

	AtomBijection StructureMapper::calculateFragmentBijection
		(const vector <Fragment*>& A, const vector<Fragment*>& B)
	{
		AtomBijection bijection;
		AtomBijection::AtomPair pair;

		Size minimum = (Size)min(A.size(), B.size());

		Fragment* fragment_A = 0;
		Fragment* fragment_B = 0;

		for(Size i = 0; i < minimum; i++)
		{
			fragment_A = A[i];
			fragment_B = B[i];

			// ?????: atom names should be checked for uniqueness

			//iterate over all atoms of A and compare names with atoms of B
			for(AtomIterator atom_iterator1 = fragment_A->beginAtom(); +atom_iterator1; ++atom_iterator1)
			{
				for(AtomIterator atom_iterator2 = fragment_B->beginAtom(); +atom_iterator2; ++atom_iterator2)
				{
					if ((*atom_iterator1).getName() ==(*atom_iterator2).getName())
					{
						pair.first = &(*atom_iterator1);
						pair.second = &(*atom_iterator2);
						bijection.push_back(pair);
					}
				}
			}
		}

		return bijection;
	}


	bool StructureMapper::mapFragments
		(const vector<Fragment*>& A,
		 const vector<Fragment*>& B, Matrix4x4* transformation, double upper_bound, double lower_bound)
	{
		AtomBijection fragment_bijection = calculateFragmentBijection(A, B);

		Size size = (Size)fragment_bijection.size();

		// if no bijection could be found, return false
		if (size == 0)
		{
		  return false;
		}

		Matrix4x4 tmp_transformation = transformation_;
		AtomBijection tmp_bijection = bijection_;
	  bijection_ = fragment_bijection;

		// calculate all triangles from the bijection
		Size i, j, k;
		double square_distance;
		double min_rmsd = std::numeric_limits<double>::max();
		double rmsd;

		for (k = 0; k < size; k++)
		{
			for (j = 0; j < size; j++)
			{
				square_distance =	fragment_bijection[k].first->getPosition().getSquareDistance(fragment_bijection[j].first->getPosition());
				if ((j != k) &&(square_distance >(lower_bound * lower_bound))
						&&(square_distance <(upper_bound * upper_bound)))
				{
					for (i = 0; i < size; i++)
					{
						square_distance = fragment_bijection[k].first->getPosition().getSquareDistance
								(fragment_bijection[i].first->getPosition());

						if ((i != k) &&(i != j) && (square_distance > (lower_bound * lower_bound))
								&& (square_distance < (upper_bound * upper_bound)))
						{
							transformation_ = matchPoints(fragment_bijection[k].first->getPosition(),
																						fragment_bijection[j].first->getPosition(),
																						fragment_bijection[i].first->getPosition(),
																						fragment_bijection[k].second->getPosition(),
																						fragment_bijection[j].second->getPosition(),
																						fragment_bijection[i].second->getPosition());
							rmsd = calculateRMSD();
							if (rmsd < min_rmsd)
							{
								*transformation = transformation_;
								min_rmsd = rmsd;
							}
						}
					}
				}
			}
		}

		transformation_ = tmp_transformation;
		bijection_ = tmp_bijection;

		return true;
	}

	void StructureMapper::calculateDefaultBijection(bool limit_to_selection)
	{
		// Make sure we have two structures...
		if (A_ == 0 || B_ == 0)
		{
			return;
		}

		// Assign by names first.
		bijection_.assignByName(*A_, *B_, limit_to_selection);

		// Check whether we could map anything.
		// If not: method of last resort, map the atoms in the
		// order they appear in.
		if (bijection_.size() == 0)
		{
			bijection_.assignTrivial(*A_, *B_, limit_to_selection);
		}
	}

	// constructor with the following properties: The transformation maps 
	// (1) the point(vector3) w1 onto the point v1 and  
	// (2) the point w2 onto the ray that starts in v1 and goes through v2
	// (3) the point w3 into the plane generated by v1, v2 and v3

#define EPSILON 0.00001
#define EPSILON2 0.00000001

	Matrix4x4 StructureMapper::matchPoints
		(const Vector3 & w1, const Vector3 & w2, const Vector3 & w3, 
		 const Vector3 & v1, const Vector3 & v2, const Vector3 & v3)
	{
		// initialize transformation matrix
		Matrix4x4 transformation(1, 0, 0, -w1.x, 0, 1, 0, -w1.y, 0, 0, 1, -w1.z, 0, 0, 0, 1);

		// Compute the translations that map v1 and w1 onto the origin 
		// and apply them to v2, v3 and w2, w3.
		Vector3 tw2(w2.x - w1.x, w2.y - w1.y, w2.z - w1.z);
		Vector3 tw3(w3.x - w1.x, w3.y - w1.y, w3.z - w1.z);

		Vector3 tv2(v2.x - v1.x, v2.y - v1.y, v2.z - v1.z);
		Vector3 tv3(v3.x - v1.x, v3.y - v1.y, v3.z - v1.z);

		double dist_v2_v1 = tv2.getSquareLength();
		double dist_w2_w1 = tw2.getSquareLength();
		double dist_w3_w1 = tw3.getSquareLength();
		double dist_v3_v1 = tv3.getSquareLength();

		// Try to remove nasty singularities arising if the first two
		// points in each point set are too close to each other:
		//   (a) ensure (v2 != v1) 
		if ((dist_v2_v1 < EPSILON2) && (dist_v3_v1 >= EPSILON2))
		{
			tv2.swap(tv3);
		}
		//   (b) ensure (w2 != w1) 
		if ((dist_w2_w1 < EPSILON2) && (dist_w3_w1 >= EPSILON2))
		{
			tw2.swap(tw3);
		}

		Vector3 rotation_axis;
		Quaternion rotation_quat;
		Matrix4x4 rotation;
		if ((tv2.getSquareLength() >= EPSILON2) && (tw2.getSquareLength() >= EPSILON2))
		{
			// calculate the rotation axis: orthogonal to tv2 and tw2
			tw2.normalize();
			tv2.normalize();

			rotation_axis = tw2 + tv2;

			if (rotation_axis.getSquareLength() < EPSILON)
			{
				// the two axes seem to be antiparallel -
				// invert the second vector
				rotation.setIdentity();
				rotation.m11 = -1.0;
				rotation.m22 = -1.0;
				rotation.m33 = -1.0;
			}
			else
			{
				// rotate around the rotation axis
				rotation_quat.fromAxisAngle(rotation_axis, Constants::PI);

				// Compute the matrix4x4 form of the rotation and apply it to tv3,tw2,tw3
				rotation_quat.getRotationMatrix(rotation);
			}

			tw2 = rotation * tw2;
			tw3 = rotation * tw3;

			transformation = rotation * transformation;

			if ((tw3.getSquareLength() > EPSILON2) &&(tv3.getSquareLength() > EPSILON2))
			{
				tw3.normalize();
				tv3.normalize();

				Vector3 axis_w = tv2 % tw3;
				Vector3 axis_v = tv2 % tv3;

				if ((axis_v.getSquareLength() > EPSILON2) &&(axis_w.getSquareLength() > EPSILON2))
				{
					axis_v.normalize();
					axis_w.normalize();

					rotation_axis = axis_w % axis_v;

					if (rotation_axis.getSquareLength() < EPSILON2)
					{
						double scalar_prod = axis_w * axis_v;
						if (scalar_prod < 0.0)
						{
							rotation_quat.fromAxisAngle(tv2, Constants::PI);
							rotation_quat.getRotationMatrix(rotation);
						}
						else
						{
							rotation.setIdentity();
						}
					}
					else
					{
						// Compute the quaternion form of the rotation that maps tw3 onto tv3
						double product = axis_w * axis_v;
						product = std::min(1., std::max(-1., product));

						double angle = acos(product);
						if (angle > EPSILON)
						{
							rotation_quat.fromAxisAngle(rotation_axis, angle);

							// Compute the matrix4x4 form of the rotation
							// and add it to the transformation
							rotation_quat.getRotationMatrix(rotation);
						}
						else
						{
							// Use the identity matrix instead.
							rotation.setIdentity();
						}
					}

					transformation = rotation * transformation;
				}
			}
		}

		// apply the translation onto v1
		transformation.m14 += v1.x;
		transformation.m24 += v1.y;
		transformation.m34 += v1.z;

		// done
		return transformation;
	}


	Matrix4x4 StructureMapper::matchBackboneAtoms
		(const Residue& r1, const Residue& r2)
	{
		Size counter = 0;
		
		bool	got_p1_r1 = false;
		bool  got_p2_r1 = false;
		bool	got_p3_r1 = false;
		bool  got_p1_r2 = false;
		bool  got_p2_r2 = false;
		bool  got_p3_r2 = false;

		Matrix4x4 T;
 
		Vector3 p1_r1;  // Position of C_alpha atom of residue r1
		Vector3 p2_r1;  // Position of backbone N atom of residue r1
		Vector3 p3_r1;  // Position of backbone C atom of residue r1 
		Vector3 p1_r2;  // Position of C_alpha atom of residue r2
		Vector3 p2_r2;  // Position of backbone N atom of residue r2
		Vector3 p3_r2;  // Position of backbone C atom of residue r2 

		AtomConstIterator atom_it;

		// searching the backbone atoms of residue r1
		for (atom_it = r1.beginAtom(); +atom_it; ++atom_it)
		{
			if (!got_p1_r1 && atom_it->getName() == "CA")
			{
				p1_r1 = atom_it->getPosition();
				got_p1_r1 = true;
				counter++;
			}
			if (!got_p2_r1 && atom_it->getName() == "N")
			{
				p2_r1 = atom_it->getPosition();
				got_p2_r1 = true;
				counter++;
			}
			if (!got_p3_r1 && atom_it->getName() == "C")
			{
				p3_r1 = atom_it->getPosition();
				got_p3_r1 = true;
				counter++;
			}
		} 

		// searching the backbone atoms of residue r2
		for (atom_it = r2.beginAtom(); +atom_it; ++atom_it)
		{
			if (!got_p1_r2 && atom_it->getName() == "CA")
			{
				p1_r2 = atom_it->getPosition();
				got_p1_r2 = true;
				counter++;
			}
			if (!got_p2_r2 && atom_it->getName() == "N")
			{
				p2_r2 =(*atom_it).getPosition();
				got_p2_r2 = true;
				counter++;
			}
			if (!got_p3_r2 && atom_it->getName() == "C")
			{
				p3_r2 = atom_it->getPosition();
				got_p3_r2 = true;
				counter++;
			}
		} 

		// Backbone atoms are missing
		if (counter != 6)
		{
			// Error: Send error message	
			Log.error() << "StructureMapper::matchBackboneAtoms: missing backbone atoms" << endl;
		}
		else
		{
			T = matchPoints(p1_r1, p2_r1, p3_r1, p1_r2, p2_r2, p3_r2);
		}

		return T;
	}

	// map the i-th residue in the list l1 
  // on the i-th residue of the list l2 (the backbone atoms are matched) 
	Size StructureMapper::mapResiduesByBackbone
		(const list<Residue*>& l1, const list<Residue*>& l2)
	{
		Size counter = 0; // number of matched residues
		Matrix4x4 null;   // the null Matrix
		TransformationProcessor T;

		// Walk down both lists and map the residues.
		list<Residue*>::const_iterator list_it_l1 = l1.begin();
		list<Residue*>::const_iterator list_it_l2 = l2.begin();
		for( ; list_it_l1 != l1.end() && list_it_l2 != l2.end(); ++list_it_l1,++list_it_l2)
		{
			// Compute the transformation matching the backbone atoms of 
			// a residue of l1 onto the corresponding residue of l2.
			T.setTransformation(matchBackboneAtoms(**list_it_l1, **list_it_l2));

			// If a valid transformation is found, (i.e. T's transformation != null),
			// apply it to the residue.
			if (!(T.getTransformation().isEqual(null)))
			{
				(*list_it_l1)->apply(T);
				counter++;
			}   
		}
	
		// Return the number of successfully matched residues.
		return(counter);
	}

	vector<vector<Fragment*> >& StructureMapper::searchPattern
		(vector<Fragment*>& pattern,
		 AtomContainer& ac, double max_rmsd, double max_center_tolerance, double upper_bound, double lower_bound)
	{
		// determine number of fragments in the pattern
		Size no_of_frag = (Size)pattern.size();

		// calculate the distances of the centers of the pattern fragments 
		// and store them in the array dist_pattern

		vector<float>	pattern_distances(no_of_frag * no_of_frag);
		vector<Vector3> pattern_centers(no_of_frag);

		Size i, j;
		GeometricCenterProcessor geo_center;

		for(i = 0; i < no_of_frag; i++)
		{
			pattern[i]->apply(geo_center);
			pattern_centers[i] = geo_center.getCenter();
		}

		float distance;

		for(i = 0; i < no_of_frag; i++)
		{
			for(j = i; j < no_of_frag; j++)
			{
				distance = pattern_centers[i].getDistance(pattern_centers[j]);
				pattern_distances[i * no_of_frag + j] = distance;
				pattern_distances[j * no_of_frag + i] = distance;
			}
		}
		pattern_centers.clear();

		// determine the molecular fragments in ac 
		// and store them in an array

		AtomContainerIterator ac_it;
		vector<Fragment*> ac_fragments;

		for	(ac_it = ac.beginAtomContainer(); 
				 ac_it != ac.endAtomContainer(); ++ac_it)
		{
            if (RTTI::isKindOf<Fragment>(&*ac_it))
			{
				ac_fragments.push_back(RTTI::castTo<Fragment>(*ac_it));
			}
		}

		// determine the number of fragments of the ac
		Size no_of_comp_frag = (Size)ac_fragments.size();

		// calculate the centers of the ac fragments
		vector<Vector3> ac_centers(no_of_comp_frag);

		for(i = 1; i < no_of_comp_frag; i++)
		{
			ac_fragments[i]->apply(geo_center);
			ac_centers[i] = geo_center.getCenter();
		}

		// calculate the distances of the centers of ac fragments

		vector < float >comp_frag_dist(no_of_comp_frag * no_of_comp_frag);

		for(i = 0; i < no_of_comp_frag; i++)
		{
			for(j = i; j < no_of_comp_frag; j++)
			{
				distance = ac_centers[i].getDistance(ac_centers[j]);
				comp_frag_dist[i * no_of_comp_frag + j] = distance;
				comp_frag_dist[j * no_of_comp_frag + i] = distance;
			}
		}

		ac_centers.clear();

		// calculate an array of arrays that contains the indices of potential matching fragments

		vector < vector < Size > >indices_CF(no_of_frag);
		vector < vector < Fragment * > >* result;
		bool ready = false;
		Size counter;

		result = new vector < vector < Fragment * > >;

		for(i = 0; i < no_of_frag && !ready; i++)
		{
			for(j = 0, counter = 0; j < no_of_comp_frag; ++j)
			{
				if (ac_fragments[j]->getName() == pattern[i]->getName())
				{
					counter++;
					indices_CF[i].push_back(j);
				}
			}
			if (counter == 0)
			{
				ready = true;
			}
		}

		// search the pattern using the array of indices

		vector < Fragment * >potential_pattern(no_of_frag);
		vector < Size > indices_of_pot_pattern(no_of_frag);
		Matrix4x4 T;
		bool distances_fit;
		Size k;
		stack < Size > index_stack;

		i = 0;
		j = 0;

		while(!ready)
		{
			indices_of_pot_pattern[i] = indices_CF[i][j];
			distances_fit = true;

			for(k = 0; k < i && distances_fit; k++)
			{
				distance = pattern_distances[i * no_of_frag + k] -
				comp_frag_dist[indices_of_pot_pattern[i] * no_of_comp_frag + indices_of_pot_pattern[k]];
				if (distance < -max_center_tolerance || distance > max_center_tolerance)
				{
					distances_fit = false;
				}
			}

			if (distances_fit)
			{
				index_stack.push(j);
				i++;
				if (i == no_of_frag)
				{
					for(k = 0; k < no_of_frag; k++)
					{
						potential_pattern.push_back(ac_fragments[indices_of_pot_pattern[k]]);

						mapFragments(potential_pattern, pattern, &T, upper_bound, lower_bound);
						if (rmsd_ <= max_rmsd)
						{
							result->push_back(potential_pattern);
							potential_pattern.clear();
						}
						else
						{
							j = 0;
						}
					}
				}
				else
				{
					j++;
					if (j == indices_CF[i].size())
					{
						i--;
						j =(Size) index_stack.top() + 1;
						index_stack.pop();
					}
				}

				if ((i == 0) &&(j == indices_CF[0].size()))
				{
					ready = true;
				}
			}
		}

		return *result;
	}

	Matrix4x4 StructureMapper::mapProteins
		(Protein& P1, Protein& P2,
		 map<String, Size>& type_map,
		 Size& no_matched_ca, double& rmsd, 
		 double upper_bound, double lower_bound, double tolerance)
	{
		// calculate bounding box of protein P1
		BoundingBoxProcessor box_processor;

		P1.apply(box_processor);

		// insert positions of CA-atoms of P1 into a three-dimensional hashgrid 
		// and in the array ca_atoms

		Vector3 upper_bound_vector(upper_bound, upper_bound, upper_bound);

		 HashGrid3 < Position > grid_P1(box_processor.getLower() - upper_bound_vector,
		  																box_processor.getUpper() - box_processor.getLower() +
			  															(float) 2.0 * upper_bound_vector, upper_bound);

		AtomIterator atom_it;
	  vector < Vector3 > ca_atoms_P1;
	  vector < Position > index_ca_P1;
		Position no_ca_P1 = 0;

		for(atom_it = P1.beginAtom(); +atom_it; ++atom_it)
		{
			if (((*atom_it).getElement() == PTE[Element::C]) &&((*atom_it).getName().trim() == "CA"))
			{
				grid_P1.insert((*atom_it).getPosition(), no_ca_P1);
				no_ca_P1++;
				ca_atoms_P1.push_back((*atom_it).getPosition());
				index_ca_P1.push_back(type_map[(*atom_it).getFragment()->getName()]);
			}
		}

		// calculate bounding box of protein P2
		P2.apply(box_processor);

		// insert positions of CA-atoms of P2 into the hashgrid grid_P2
		HashGrid3 < Position > grid_P2(box_processor.getLower() - upper_bound_vector,
																		box_processor.getUpper() - box_processor.getLower() +
																		(float) 2.0 * upper_bound_vector, upper_bound);
		Vector3 tolerance_vector(2 * tolerance, 2 * tolerance, 2 * tolerance);
		HashGrid3 < Position > fine_grid_P2(box_processor.getLower() - tolerance_vector,
																				 box_processor.getUpper() - box_processor.getLower() + tolerance_vector,
																				 2 * tolerance);

		vector < Vector3 > ca_atoms_P2;
		vector < Position > index_ca_P2;
		Size no_ca_P2 = 0;

		for(atom_it = P2.beginAtom(); +atom_it; ++atom_it)
		{
			if (((*atom_it).getElement() == PTE[Element::C]) &&((*atom_it).getName().trim() == "CA"))
			{
				grid_P2.insert((*atom_it).getPosition(), no_ca_P2);
				fine_grid_P2.insert((*atom_it).getPosition(), no_ca_P2);

				no_ca_P2++;
				ca_atoms_P2.push_back((*atom_it).getPosition());
				index_ca_P2.push_back(type_map[(*atom_it).getFragment()->getName()]);
			}
		}

		// calculate triangles between CA-atoms of P2 whose edge length are larger than lower_bound
		// and smaller than upperbound and store them in a hashgrid with respect to their edge length

		Vector3 upper(upper_bound + 1, upper_bound + 1, upper_bound + 1);
		Vector3 lower(lower_bound - 1, lower_bound - 1, lower_bound - 1);

		HashGrid3 < TVector3 < Position > >triangles_P2(lower, upper - lower, tolerance);

		HashGrid3 < Position >::BoxIterator b_it1;
		HashGridBox3 < Position >::BoxIterator b_it2, b_it3;
		HashGridBox3 < Position >::DataIterator d_it1, d_it2, d_it3;
		TVector3 < Position > index_vector;
		Vector3 distance_vector;
		float square_upper = upper_bound * upper_bound;
		float square_lower = lower_bound * lower_bound;
		float distance1, distance2, distance3;

		for(b_it1 = grid_P2.beginBox(); +b_it1; ++b_it1)
		{
			for(d_it1 =(*b_it1).beginData(); +d_it1; ++d_it1)
			{
				for(b_it2 =(*b_it1).beginBox(); +b_it2; ++b_it2)
				{
					for(d_it2 =(*b_it2).beginData(); +d_it2; ++d_it2)
					{
						if ((*d_it2) !=(*d_it1))
						{
							distance1 = ca_atoms_P2[(*d_it1)].getSquareDistance(ca_atoms_P2[(*d_it2)]);
							if (distance1 < square_upper && distance1 > square_lower)
							{
								for(b_it3 =(*b_it1).beginBox(); +b_it3; ++b_it3)
								{
									for(d_it3 =(*b_it3).beginData(); +d_it3; ++d_it3)
									{
										if ((*d_it3) !=(*d_it1) &&(*d_it3) !=(*d_it2))
										{
											distance2 = ca_atoms_P2[(*d_it1)].getSquareDistance(ca_atoms_P2[(*d_it3)]);
											if (distance2 < square_upper && distance2 > square_lower)
											{
												distance3 = ca_atoms_P2[(*d_it2)].getSquareDistance(ca_atoms_P2[(*d_it3)]);
												if (distance3 < square_upper && distance3 > square_lower)
												{
													distance1 = sqrt(distance1);
													distance2 = sqrt(distance2);
													distance3 = sqrt(distance3);
													distance_vector.set(distance1, distance2, distance3);
													index_vector.set((*d_it1),(*d_it2),(*d_it3));
													triangles_P2.insert(distance_vector, index_vector);
												}
											}
										}
									}
								}
							}
						}
					}
				}
			}
		}
		// calculate all triangles between CA-Atoms of P1 and 
		// search similar triangles between CA-Atoms of P2 stored in triangles_P2

		HashGridBox3 < TVector3 < Position > >::BoxIterator b_it4;
		HashGridBox3 < TVector3 < Position > >::DataIterator d_it4;
		HashGridBox3 < TVector3 < Position > >*box;
		HashGridBox3 < Position > *ibox;
		HashGridBox3 < Position >::BoxIterator ibox_it;
		HashGridBox3 < Position >::DataIterator id_it;

		Matrix4x4 T;
		Matrix4x4 T_best;
		Vector3 v;
		bool matched;
		float square_tolerance;
		Size matched_ca;

		square_tolerance = 4 * tolerance * tolerance;
		no_matched_ca = 0;
		float squared_atom_dist, current_rmsd;

		for(b_it1 = grid_P1.beginBox(); +b_it1; ++b_it1)
		{
			for(d_it1 =(*b_it1).beginData(); +d_it1; ++d_it1)
			{
				for(b_it2 =(*b_it1).beginBox(); +b_it2; ++b_it2)
				{
					for(d_it2 =(*b_it2).beginData(); +d_it2; ++d_it2)
					{
						if ((*d_it2) !=(*d_it1))
						{
							distance1 = ca_atoms_P1[(*d_it1)].getSquareDistance(ca_atoms_P1[(*d_it2)]);
							if (distance1 < square_upper && distance1 > square_lower)
							{
								distance1 = sqrt(distance1);
								for(b_it3 =(*b_it1).beginBox(); +b_it3; ++b_it3)
								{
									for(d_it3 =(*b_it3).beginData(); +d_it3; ++d_it3)
									{
										if ((*d_it3) !=(*d_it1) &&(*d_it3) !=(*d_it2))
										{
											distance2 = ca_atoms_P1[*d_it1].getSquareDistance(ca_atoms_P1[*d_it3]);
											if (distance2 < square_upper && distance2 > square_lower)
											{
												distance2 = sqrt(distance2);
												distance3 = ca_atoms_P1[*d_it2].getSquareDistance(ca_atoms_P1[*d_it3]);
												if (distance3 < square_upper && distance3 > square_lower)
												{
													distance3 = sqrt(distance3);
													distance_vector.set(distance1, distance2, distance3);
													index_vector.set(*d_it1, *d_it2, *d_it3);
													box = triangles_P2.getBox(distance_vector);

													for(b_it4 = box->beginBox(); +b_it4; ++b_it4)
													{
														for(d_it4 =(*b_it4).beginData(); +d_it4; ++d_it4)
														{
															if (index_ca_P1[(*d_it1)] == index_ca_P2[(*d_it4).x] &&
																	index_ca_P1[(*d_it2)] == index_ca_P2[(*d_it4).y] &&
																	index_ca_P1[(*d_it3)] == index_ca_P2[(*d_it4).z])
															{
																T = matchPoints(ca_atoms_P1[(*d_it1)], ca_atoms_P1[(*d_it2)], ca_atoms_P1[(*d_it3)],
																								ca_atoms_P2[(*d_it4).x], ca_atoms_P2[(*d_it4).y],	ca_atoms_P2[(*d_it4).z]);

																matched_ca = 0;
																current_rmsd = 0;
																squared_atom_dist = 0;

																for(Size i = 0; i < no_ca_P1; i++)
																{
																	v = T * ca_atoms_P1[i];
																	ibox = fine_grid_P2.getBox(v);

																	if (ibox != 0)
																	{
																		matched = false;

																		for(ibox_it = ibox->beginBox(); +ibox_it && !matched; ++ibox_it)
																		{
																			for(id_it =(*ibox_it).beginData(); +id_it && !matched; ++id_it)
																			{
																				squared_atom_dist = v.getSquareDistance(ca_atoms_P2[(*id_it)]);
																				if (squared_atom_dist <= square_tolerance)
																				{
																					matched_ca++;
																					matched = true;
																					current_rmsd += squared_atom_dist;
																				}
																			}
																		}
																	}
																}

																if (matched_ca >= no_matched_ca)
																{
																	current_rmsd = sqrt(current_rmsd / matched_ca);
																	if (matched_ca == no_matched_ca)
																	{
																		if (current_rmsd < rmsd)
																		{
																			T_best = T;
																			rmsd = current_rmsd;
																		}
																	}
																	else
																	{
																		T_best = T;
																		rmsd = current_rmsd;
																	}
																	no_matched_ca = matched_ca;
																}
															}
														}
													}
												}
											}
										}
									}
								}
							}
						}
					}
				}
			}
		}

		return T_best;
	}

}	// namespace BALL

#undef EPSILON
#undef EPSILON2