File: ComposedEnergyProcessor_test.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (166 lines) | stat: -rw-r--r-- 4,093 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/CONCEPT/classTest.h>
#include <BALLTestConfig.h>

///////////////////////////
#include <BALL/ENERGY/composedEnergyProcessor.h>
#include <BALL/FORMAT/HINFile.h>
#include <BALL/KERNEL/system.h>

///////////////////////////

START_TEST(ComposedEnergyProcessor_test)

/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////

using namespace BALL;

/** Test class.
 *  The energy is calculated as:
 *  (fragment_.countAtomContainers() + 1 + change) * fragment_.countAtoms()
 */
 class MyEnergyProcessor
  : public EnergyProcessor
{
  public: 
    
  MyEnergyProcessor()
    : change(0)
  {}
    
	virtual bool start() throw()
	{
		number_of_fragments = 0;
		return true;
	}
	
  virtual Processor::Result operator () (AtomContainer& fragment) throw() 
  {
    number_of_fragments += 1;
    EnergyProcessor::operator() (fragment);
    return BALL::Processor::CONTINUE;
  }
  
  virtual bool finish() throw() 
  {
    energy_ = fragment_->countAtoms() * (number_of_fragments + change); 
    return true;
  }

  float change; 
	float number_of_fragments;
};


MyEnergyProcessor* pep1;
MyEnergyProcessor* pep2;
System S;
double result(0);

CHECK(Preparations)
	pep1 = new MyEnergyProcessor;
	pep1->change = 1.0;
 	pep2 = new MyEnergyProcessor;
	pep2->change = 2.0;

	HINFile f(BALL_TEST_DATA_PATH(AnisotropyShiftProcessor_test.hin));   
  f >> S; 
  f.close();

	TEST_EQUAL(S.apply(*pep1), true)
	TEST_EQUAL(pep1->getEnergy(), (S.countAtomContainers() + 1 + 1) * S.countAtoms()) 	
	TEST_EQUAL(pep1->getEnergy(), 217)
	TEST_EQUAL(S.apply(*pep2), true)
	TEST_EQUAL(pep2->getEnergy(), (S.countAtomContainers() + 2 + 1) * S.countAtoms()) 	
	TEST_EQUAL(pep2->getEnergy(), 248)
	result = pep1->getEnergy() + pep2->getEnergy();
 RESULT


CHECK(ComposedEnergyProcessor::ComposedEnergyProcessor())
	ComposedEnergyProcessor* cep = new ComposedEnergyProcessor;
	TEST_NOT_EQUAL(cep, 0)
	TEST_EQUAL(cep->isValid(), true)
	TEST_REAL_EQUAL(cep->getEnergy(), 0)
	delete cep;
RESULT

CHECK(ComposedEnergyProcessor::~ComposedEnergyProcessor())
	ComposedEnergyProcessor* cep = new ComposedEnergyProcessor;
	delete cep;
RESULT


ComposedEnergyProcessor cep;

CHECK(ComposedEnergyProcessor::addComponent(EnergyProcessor* proc))
	cep.addComponent(pep1);
	cep.addComponent(pep2);
	TEST_EQUAL(cep.getNumberOfEnergyProcessors(), 2)
RESULT


CHECK(ComposedEnergyProcessor::removeComponent(EnergyProcessor* proc))
  cep.removeComponent(pep2);
	TEST_EQUAL(cep.getNumberOfEnergyProcessors(), 1)
	cep.addComponent(pep2);
	TEST_EQUAL(cep.getNumberOfEnergyProcessors(), 2)
RESULT


CHECK(ComposedEnergyProcessor::finish())
	TEST_EQUAL(S.apply(cep), true)
	TEST_REAL_EQUAL(cep.getEnergy(), result)
RESULT


ComposedEnergyProcessor cep2;
CHECK(ComposedEnergyProcessor::ComposedEnergyProcessor(EnergyProcessorList proc_list))
  EnergyProcessorList epl;
	epl.push_back((EnergyProcessor*)pep1);
	epl.push_back((EnergyProcessor*)pep2);
	cep2 = ComposedEnergyProcessor(epl);
	TEST_EQUAL(cep2.isValid(), true)
	TEST_EQUAL(cep2.getNumberOfEnergyProcessors(), 2)
	S.apply(cep2);

	TEST_EQUAL(cep2.isValid(), true)
	TEST_REAL_EQUAL(cep2.getEnergy(), result)
RESULT


CHECK(ComposedEnergyProcessor::clear())
  cep2.clear();
	cep2 = cep;
	TEST_REAL_EQUAL(cep2.getEnergy(), result)
	cep2.clear();
	TEST_REAL_EQUAL(cep2.getEnergy(), 0)
RESULT


CHECK(ComposedEnergyProcessor::ComposedEnergyProcessor& operator = 
			(const ComposedEnergyProcessor& proc))
  cep2.clear();
	cep2 = cep;
	TEST_REAL_EQUAL(cep2.getEnergy(), result)
	S.apply(cep2);
	TEST_REAL_EQUAL(cep2.getEnergy(), result)
RESULT


CHECK(ComposedEnergyProcessor::ComposedEnergyProcessor(const ComposedEnergyProcessor& composed_energy_proc))
  ComposedEnergyProcessor cep2(cep);
	TEST_REAL_EQUAL(cep2.getEnergy(), result)
	S.apply(cep2);
	TEST_REAL_EQUAL(cep2.getEnergy(), result)
RESULT
delete pep1;
delete pep2;

/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
END_TEST