File: snBModel.h

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (82 lines) | stat: -rw-r--r-- 1,671 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#ifndef SNBMODEL
#define SNBMODEL

#ifndef BALL_QSAR_COMMON_H
	#include <BALL/QSAR/common.h>
#endif

#ifndef STATISTICS
#include <BALL/QSAR/statistics.h>
#endif

#ifndef BAYESMODEL
#include <BALL/QSAR/bayesModel.h>
#endif


namespace BALL{
	namespace QSAR {

		/** class for simple naive Bayes */
		class BALL_EXPORT SNBModel : public BayesModel
		{ 
			public:
				/** @name Constructors and Destructors
				 */
				//@{
				SNBModel(const QSARData& q);

				~SNBModel();
				//@}
				
				
				/** @name Accessors
				 */
				//@{
				void train();
				
				Eigen::VectorXd predict(const vector<double>& substance, bool transform=1);
				
				vector<double> getParameters() const;
				
				void setParameters(vector<double>& v);
				
				void saveToFile(string filename);
				
				bool isTrained();
				
				void readFromFile(string filename);
				
				/** calculate the probability for the specified feature to assume the given value for each class
				@return a probability for each class */
				vector<double> calculateProbabilities(int activitiy_index, int feature_index, double feature_value);
				
				int getNoResponseVariables();
				//@}
				
				
			private:
				/** @name Attributes
				 */
				//@{
				/** vector containing one matrix for each modelled activity which holds the mean of each feature for each class */
				MatrixVector mean_;
				
				/** vector containing one matrix for each modelled activity which holds the standard deviation of each feature for each class */
				MatrixVector stddev_;
				
				static const double sqrt2Pi_;
							

				
				//@}
		};
	}
}

#endif //SNBMODEL