File: DockPoseClustering.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (364 lines) | stat: -rw-r--r-- 14,084 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

// A tool for clustering docking poses
//
// 

#include <BALL/DOCKING/COMMON/poseClustering.h>
#include <BALL/FORMAT/DCDFile.h>
#include <BALL/FORMAT/PDBFile.h>
#include <BALL/FORMAT/lineBasedFile.h>
#include <BALL/DOCKING/COMMON/conformationSet.h>

#include <BALL/FORMAT/commandlineParser.h>
#include <iostream>
#include "version.h"

using namespace std;
using namespace BALL;

int main (int argc, char **argv)
{
	// instantiate CommandlineParser object supplying
	// - tool name
	// - short description
	// - version string
	// - build date
	// - category
	CommandlineParser parpars("DockPoseClustering", "clusters docking poses ", VERSION, String(__DATE__), "Docking");

	// we register an input file parameter 
	// - CLI switch
	// - description
	// - Inputfile
	parpars.registerMandatoryInputFile("i_pdb", "input pdb-file");
	parpars.registerOptionalInputFile("i_dcd", "input dcd-file");
	///TODO: offer the alternatives in a more elegant way!
	parpars.registerOptionalInputFile("i_trans", "or input transformation file for rigid rmsd clustering ");

	// we register an output file parameter 
	// - CLI switch
	// - description	
	// - parameter type	
	// - required
	// - default value
	// - hidden in galaxy
	parpars.registerMandatoryOutputFile("o_index_list", "output file name for the index list ");
	parpars.setParameterAsHidden("o_index_list");
	parpars.registerOptionalOutputFile("o_score_matrix", "output file name for scoring matrix ");
	parpars.setParameterAsHidden("o_score_matrix");
	parpars.registerOptionalOutputFile("o_dcd", "output file name for the first cluster dcd file ");
	parpars.setParameterAsHidden("o_dcd");

	parpars.registerOptionalGalaxyOutputId("o_dcd_id", "output id ", "$o_dcd.id");
	// need to be hidden in command line mode
	parpars.setParameterAsAdvanced("o_dcd_id");
	parpars.setParameterAsHidden("o_dcd_id");

	parpars.registerOptionalGalaxyOutputFolder("o_dcd_dir", "output directory for 2nd to last cluster dcd file (if needed) ", "$__new_file_path__");
	// need to be hidden in command line mode
	parpars.setParameterAsAdvanced("o_dcd_dir");
	parpars.setParameterAsHidden("o_dcd_dir");

	// register String parameter for supplying minimal rmsd between clusters
	parpars.registerOptionalDoubleParameter("rmsd_cutoff", "minimal rmsd between the final clusters (default 5.0) ", 5.0);
	parpars.setParameterRestrictions("rmsd_cutoff", 0, 100);

	// choice of cluster algorithm  
	parpars.registerOptionalStringParameter("alg", "algorithm used for clustering (CLINK_DEFAYS, CLINK_ALTHAUS, NEAREST_NEIGHBOR_CHAIN_WARD, SLINK_SIBSON, TRIVIAL_COMPLETE_LINKAGE) ", "CLINK_DEFAYS");
	list<String> cluster_algs;
	cluster_algs.push_back("CLINK_DEFAYS");
	cluster_algs.push_back("CLINK_ALTHAUS");
	cluster_algs.push_back("TRIVIAL_COMPLETE_LINKAGE");
	cluster_algs.push_back("NEAREST_NEIGHBOR_CHAIN_WARD");
	cluster_algs.push_back("SLINK_SIBSON");
	parpars.setParameterRestrictions("alg", cluster_algs);

	// choice of atom rmsd scope 
	parpars.registerOptionalStringParameter("scope", "atoms to be considered for scoreing a pose (C_ALPHA, BACKBONE, ALL_ATOMS) ", "C_ALPHA");
	list<String> rmsd_levels;
	rmsd_levels.push_back("C_ALPHA");
	//rmsd_levels.push_back("HEAVY_ATOMS"); //TODO
	rmsd_levels.push_back("BACKBONE");
	rmsd_levels.push_back("ALL_ATOMS");
	parpars.setParameterRestrictions("scope", rmsd_levels);

	// choice of rmsd type
	parpars.registerOptionalStringParameter("rmsd_type", "rmsd type used for clustering (SNAPSHOT_RMSD, RIGID_RMSD, CENTER_OF_MASS_DISTANCE) ", "SNAPSHOT_RMSD");
	list<String> rmsd_types;
	rmsd_types.push_back("SNAPSHOT_RMSD");
	rmsd_types.push_back("RIGID_RMSD");
	rmsd_types.push_back("CENTER_OF_MASS_DISTANCE");
	parpars.setParameterRestrictions("rmsd_type", rmsd_types);

	// further optional output parameters
	parpars.registerOptionalOutputFile("o_red_dcd", "output file for the reduced cluster set (dcd with one structure per final cluster) ");

	// write the final cluster tree in boost::serialize format, if it was computed
	parpars.registerOptionalOutputFile("o_cluster_tree", "output file containing the cluster tree in boost::serialize format (if the tree was computed) ");

	// register bool parameter for using pre-clustering
	parpars.registerFlag("use_refinement", "Apply a second clustering run with different options (-refine_alg <string>, -refine_rmsd_type <string>, and -refine_rmsd_scope <string>)", false, true);

	// refinement algorithm
	parpars.registerOptionalStringParameter("refine_alg", "algorithm used for second clustering run (CLINK_DEFAYS, NEAREST_NEIGHBOR_CHAIN_WARD, SLINK_SIBSON, TRIVIAL_COMPLETE_LINKAGE) ", "CLINK_DEFAYS");
	parpars.setParameterAsHidden("refine_alg");
	parpars.setParameterRestrictions("refine_alg", cluster_algs);

	// refinement rmsd type
	parpars.registerOptionalStringParameter("refine_rmsd_type", "rmsd type used for second clustering run (SNAPSHOT_RMSD, RIGID_RMSD, CENTER_OF_MASS_DISTANCE) ", "SNAPSHOT_RMSD");
	parpars.setParameterAsHidden("refine_rmsd_type");
	parpars.setParameterRestrictions("refine_rmsd_type", rmsd_types);

	// refinement rmsd scope
	parpars.registerOptionalStringParameter("refine_rmsd_scope", "atoms to be considered for rmsd score in second clustering run (C_ALPHA, BACKBONE, ALL_ATOMS) ", "C_ALPHA");
	parpars.setParameterAsHidden("refine_rmsd_scope");
	parpars.setParameterRestrictions("refine_rmsd_scope", rmsd_levels);

	// force serial execution, even if the algorithm supports parallel runs
	parpars.registerFlag("run_serial", "force serial excecution, even if parallel execution would be supported by the algorithm", false, true);

	// the manual
	String man = "This tool computes clusters of docking poses given as conformation set or a list of rigid transformations.\n\nParameters are either the input ConformationSet (-i_dcd) and one corresponding pdb file (-i_pdb), or a transformation file (-i_trans). Output can be a cluster index list (-o_index_list), a cluster scoring matrix (-o_score_matrix), or dcd files per cluster (-o_dcd). Optional parameters are the algorithm (-alg), the minimal rmsd between the final clusters (-rmsd_cutoff), the rmsd type (-rmsd_type), and the type of atoms used for scoring a pose (-scope). The optional parameter -o_red_dcd sets the output file for the reduced cluster set (one representative per cluster). The optional parameter -o_cluster_tree specifies the output file for storing the cluster tree.\n\nOutput of this tool depends in the choice of the output parameters.";

	parpars.setToolManual(man);

	// here we set the types of I/O files
	parpars.setSupportedFormats("i_dcd","dcd");
	parpars.setSupportedFormats("i_pdb","pdb");
	parpars.setSupportedFormats("i_trans","txt");
	parpars.setSupportedFormats("o_index_list","txt");
	parpars.setSupportedFormats("o_score_matrix","txt");
	parpars.setSupportedFormats("o_dcd","dcd");
	parpars.setSupportedFormats("o_red_dcd","dcd");
	parpars.setSupportedFormats("o_cluster_tree","dat");

	parpars.parse(argc, argv);

	//////////////////////////////////////////////////

	if (parpars.has("o_dcd"))
	{
		if (!parpars.has("o_dcd_dir") || !parpars.has("o_dcd_id"))
		{
			Log << "Output type \"dcd\" requires setting the options \"o_dir\" \"o_id\"! Abort!" << endl;
			return 1;
		}
	}

	if (     parpars.has("o_cluster_tree")
			&& (!parpars.has("alg") || parpars.get("alg") != "NEAREST_NEIGHBOR_CHAIN_WARD"))
	{
		Log << "Output of cluster tree requires Ward algorithm! Abort!" << endl;
		return 1;
	}

	// read the input	
	PDBFile pdb;
	pdb.open(parpars.get("i_pdb"));
	System sys;
	pdb.read(sys);

	ConformationSet cs;
	cs.setup(sys);

	if (parpars.has("i_dcd"))
	{
		cs.readDCDFile(parpars.get("i_dcd"));
	}

	cs.resetScoring();

	PoseClustering pc;

	if (parpars.has("i_trans"))
	{
		pc.setBaseSystemAndTransformations(sys, parpars.get("i_trans"));
	}

	if (parpars.has("rmsd_cutoff"))
	{
		float rmsd = parpars.get("rmsd_cutoff").toInt();
		pc.options.setReal(PoseClustering::Option::DISTANCE_THRESHOLD, rmsd);
	}

	if (parpars.has("scope"))
	{
		String scope = parpars.get("scope");
		if (scope == "C_ALPHA")
			pc.options.set(PoseClustering::Option::RMSD_LEVEL_OF_DETAIL, PoseClustering::C_ALPHA);
		else if (scope == "BACKBONE")
			pc.options.set(PoseClustering::Option::RMSD_LEVEL_OF_DETAIL, PoseClustering::BACKBONE);
		else if (scope == "ALL_ATOMS")
			pc.options.set(PoseClustering::Option::RMSD_LEVEL_OF_DETAIL, PoseClustering::ALL_ATOMS);
		else
			Log.info() << "Unknown value " << scope  << " for option scope." << endl;
	}

	if (parpars.has("alg"))
	{
		String alg = parpars.get("alg");
		if (alg == "CLINK_DEFAYS")
			pc.options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::CLINK_DEFAYS);
		else if (alg == "CLINK_ALTHAUS")
			pc.options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::CLINK_ALTHAUS);
		else if (alg == "SLINK_SIBSON")
			pc.options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::SLINK_SIBSON);
		else if (alg == "TRIVIAL_COMPLETE_LINKAGE")
			pc.options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::TRIVIAL_COMPLETE_LINKAGE);
		else if (alg == "NEAREST_NEIGHBOR_CHAIN_WARD")
			pc.options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::NEAREST_NEIGHBOR_CHAIN_WARD);
		else
			Log.info() << "Unknown value " << alg  << " for option alg." << endl;
	}

	if (parpars.has("rmsd_type"))
	{
		String type = parpars.get("rmsd_type");
		if (type == "SNAPSHOT_RMSD")
			pc.options.set(PoseClustering::Option::RMSD_TYPE, PoseClustering::SNAPSHOT_RMSD);
		else if (type == "RIGID_RMSD")
			pc.options.set(PoseClustering::Option::RMSD_TYPE, PoseClustering::RIGID_RMSD);
		else if (type == "CENTER_OF_MASS_DISTANCE")
		{
			pc.options.set(PoseClustering::Option::RMSD_TYPE, PoseClustering::CENTER_OF_MASS_DISTANCE);
			Log << "Parameter scope will be ignored!" << endl;
		}
		else
			Log.info() << "Unknown value " << type  << " for option rmsd_type." << endl;

	}

	if (parpars.has("run_serial"))
	{
		pc.options.set(PoseClustering::Option::RUN_PARALLEL, false);
	}
	else
	{
		pc.options.set(PoseClustering::Option::RUN_PARALLEL, true);
	}

	if (parpars.has("i_dcd"))
	{
		pc.setConformationSet(&cs);
	}

	pc.compute();

	// do we need a second clustering run?
	if (parpars.has("use_refinement"))
	{
		// get the options
		Options refine_options = pc.options;
		if (parpars.has("refine_rmsd_scope"))
		{
			String scope = parpars.get("refine_rmsd_scope");
			if (scope == "C_ALPHA")
				refine_options.set(PoseClustering::Option::RMSD_LEVEL_OF_DETAIL, PoseClustering::C_ALPHA);
			else if (scope == "BACKBONE")
				refine_options.set(PoseClustering::Option::RMSD_LEVEL_OF_DETAIL, PoseClustering::BACKBONE);
			else if (scope == "ALL_ATOMS")
				refine_options.set(PoseClustering::Option::RMSD_LEVEL_OF_DETAIL, PoseClustering::ALL_ATOMS);
			else
				Log.info() << "Unknown value " << scope  << " for option refine_rmsd_scope." << endl;
		}

		if (parpars.has("refine_alg"))
		{
			String alg = parpars.get("refine_alg");
			if (alg == "CLINK_DEFAYS")
				refine_options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::CLINK_DEFAYS);
			else if (alg == "CLINK_ALTHAUS")
				refine_options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::CLINK_ALTHAUS);
			else if (alg == "SLINK_SIBSON")
				refine_options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::SLINK_SIBSON);
			else if (alg == "TRIVIAL_COMPLETE_LINKAGE")
				refine_options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::TRIVIAL_COMPLETE_LINKAGE);
			else if (alg == "NEAREST_NEIGHBOR_CHAIN_WARD")
				refine_options.set(PoseClustering::Option::CLUSTER_METHOD, PoseClustering::NEAREST_NEIGHBOR_CHAIN_WARD);
			else
				Log.info() << "Unknown value " << alg  << " for option refine_alg." << endl;
		}

		if (parpars.has("refine_rmsd_type"))
		{
			String type = parpars.get("refine_rmsd_type");
			if (type == "SNAPSHOT_RMSD")
				refine_options.set(PoseClustering::Option::RMSD_TYPE, PoseClustering::SNAPSHOT_RMSD);
			else if (type == "RIGID_RMSD")
				refine_options.set(PoseClustering::Option::RMSD_TYPE, PoseClustering::RIGID_RMSD);
			else if (type == "CENTER_OF_MASS_DISTANCE")
			{
				refine_options.set(PoseClustering::Option::RMSD_TYPE, PoseClustering::CENTER_OF_MASS_DISTANCE);
				Log << "Parameter scope will be ignored!" << endl;
			}
			else
				Log.info() << "Unknown value " << type  << " for option refine_rmsd_type." << endl;
		}

		pc.refineClustering(refine_options);
	}

	Size num_clusters = pc.getNumberOfClusters();

	Log << "Computed " <<  num_clusters << " clusters, start writing..." << endl;

	if (parpars.has("o_dcd"))
	{
		for (Size i = 0; i < num_clusters; i++)
		{
			Log << "   Cluster " << i << " has " << pc.getClusterSize(i) << " members." << endl;

			boost::shared_ptr<ConformationSet> new_cs = pc.getClusterConformationSet(i);

			String outfile_name = (i == 0) ? String(parpars.get("o_dcd"))
				: String(parpars.get("o_dcd_dir")) + "/primary_"
				+ String(parpars.get("o_dcd_id"))  + "_cluster" + String(i)
				+ "_visible_dcd";
			//Log << "   Writing solution " << String(i) << " as " << outfile_name << endl;

			new_cs->writeDCDFile(outfile_name);
		}
	}
	if (parpars.has("o_index_list"))
	{
		String outfile_name = String(parpars.get("o_index_list"));

		File cluster_outfile(outfile_name, std::ios::out);

		pc.printClusters(cluster_outfile);
	}
	if (parpars.has("o_score_matrix"))
	{
		String outfile_name = String(parpars.get("o_score_matrix"));

		File cluster_outfile(outfile_name, std::ios::out);

		pc.printClusterScores(cluster_outfile);
	}

	// print
	pc.printClusters();
	pc.printClusterScores();

	if (parpars.has("o_cluster_tree"))
	{
		File cluster_out(parpars.get("o_cluster_tree"), std::ios::out);
		pc.serializeWardClusterTree(cluster_out, true);
		cluster_out.close();
	}

	if (parpars.has("o_red_dcd"))
	{
		String outfile_name = String(parpars.get("o_red_dcd"));
		boost::shared_ptr<ConformationSet> cs = pc.getReducedConformationSet();
		cs->writeDCDFile(outfile_name);
	}

	Log << "done." << endl;

	return 0;
}