1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/DATATYPE/string.h>
#include <BALL/FORMAT/lineBasedFile.h>
#include <BALL/FORMAT/commandlineParser.h>
#include <BALL/FORMAT/molFileFactory.h>
#include <BALL/FORMAT/SDFile.h>
#include <BALL/KERNEL/molecule.h>
#include <BALL/STRUCTURE/binaryFingerprintMethods.h>
#include <BALL/SYSTEM/sysinfo.h>
#include "version.h"
#include <boost/unordered_map.hpp>
#include <boost/iostreams/copy.hpp>
#include <boost/iostreams/filtering_streambuf.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#include <boost/iostreams/stream.hpp>
#include <locale>
#include <map>
#include <vector>
using namespace BALL;
using namespace boost;
using namespace std;
typedef map<unsigned int, map<unsigned int, vector<unsigned int> > > ClusterMap;
typedef map<unsigned int, map<unsigned int, vector<unsigned int> > >::iterator ClusterMapIterator;
typedef map<unsigned int, map<unsigned int, vector<unsigned int> > >::reverse_iterator ClusterMapReverseIterator;
typedef map<unsigned int, vector<pair<unsigned int, float> > > NNData;
// Fingerprint format
// 1: Comma separated list of integer features
// 2: Fixed-length binay string
unsigned int fprint_format;
// Fingerprint length
unsigned int fixed_size_len;
// Limit number of molecules to read
unsigned int limit;
// Column number of the fingerprint
int fp_col;
// Column number of a ompound identifier
int id_col;
// True iff input library file is in SD format
bool is_lib_sdf;
// SDF tag of the fingerprint
String fp_tag;
// SDF tag of a ompound identifier
String id_tag;
void readFingerprintsCSV(LineBasedFile& fprints_in, vector<vector<unsigned short> >& mol_features, vector<String>& mol_identifiers)
{
String fprint;
String identifier;
vector<unsigned short> features;
unsigned int mol_count = 0;
mol_features.clear();
mol_identifiers.clear();
fprints_in.readLine();
while (fprints_in.startsWith("#"))
{
fprints_in.readLine();
}
fprint = fprints_in.getField(fp_col).trim();
while (!fprint.isEmpty())
{
if (id_col!=-1)
{
identifier = fprints_in.getField(id_col).trim();
}
else
{
identifier = String(mol_count);
}
if (mol_count == 0 && fprint_format == 2)
{
fixed_size_len = fprint.size();
}
if (BinaryFingerprintMethods::parseBinaryFingerprint(fprint, features, fprint_format))
{
mol_features.push_back(features);
mol_identifiers.push_back(identifier);
}
else
{
Log.error() << "-- WARNING: Fingerprint could not be read" << endl;
}
++mol_count;
if (mol_count == limit)
{
break;
}
fprints_in.readLine();
fprint = fprints_in.getField(fp_col).trim();
}
Log.level(10) << "++ Molecules read: " << mol_count << endl;
}
void readFingerprintsSDF(SDFile* fprints_in, vector<vector<unsigned short> >& mol_features, vector<String>& mol_identifiers)
{
String fprint;
String identifier;
vector<unsigned short> features;
unsigned int mol_count = 0;
mol_features.clear();
mol_identifiers.clear();
Molecule* mol = fprints_in->read();
while (mol)
{
if (mol->hasProperty(id_tag))
{
if (mol->hasProperty(fp_tag))
{
identifier = mol->getProperty(id_tag).getString();
fprint = mol->getProperty(fp_tag).getString().trim();
if (mol_count == 0 && fprint_format == 2)
{
fixed_size_len = fprint.size();
}
if (BinaryFingerprintMethods::parseBinaryFingerprint(fprint, features, fprint_format))
{
mol_features.push_back(features);
mol_identifiers.push_back(identifier);
++mol_count;
if (mol_count==limit)
{
break;
}
}
}
}
delete mol;
mol = fprints_in->read();
}
delete mol;
Log.level(10) << "++ Molecules read: " << mol_count << endl;
}
void uniqueFingerprintsFilter(vector<vector<unsigned short> >& mol_features, const vector<String>& mol_identifiers)
{
locale loc;
const collate<char>& coll = use_facet<collate<char> >(loc);
String fp;
long fp_hash;
map<long, unsigned int> fp_hash_map;
vector<vector<unsigned int> > duplicates;
for (unsigned int i=0; i!=mol_features.size(); ++i)
{
fp = "";
for (unsigned int j=0; j!=mol_features[i].size(); ++j)
{
fp += String(mol_features[i][j]);
}
fp_hash = coll.hash(fp.data(), fp.data() + fp.length());
if (fp_hash_map.find(fp_hash)==fp_hash_map.end())
{
fp_hash_map.insert(make_pair(fp_hash, duplicates.size()));
duplicates.push_back(vector<unsigned int>(1, i));
}
else
{
duplicates[fp_hash_map[fp_hash]].push_back(i);
}
}
File out("FFC_1_fingerprint_duplicates.txt", File::MODE_OUT);
out << "# FFC FINGERPRINT DUPLICATES MAPPING" << endl;
out << "# Eeach line is a blank separated list of identical fingerprints and has at least two columns." << endl;
out << "# The first column is a global internal ID [0, n-1] where n is the number of unique fingerprints." << endl;
out << "# The second and possibly following columns list the external molecule identifiers of the fingerprint duplicates. " << endl;
vector<vector<unsigned short> > tmp_features;
for (unsigned int i=0; i!=duplicates.size(); ++i)
{
// Keep first occurrence of new feature list
tmp_features.push_back(mol_features[duplicates[i][0]]);
out << tmp_features.size() - 1;
for (unsigned int j=0; j!=duplicates[i].size(); ++j)
{
out << " " << mol_identifiers[duplicates[i][j]];
}
out << endl;
}
out.close();
mol_features = tmp_features;
return;
}
void readMoleculeIdentifiers(boost::unordered_map<unsigned int, set<String> >& mol_identifiers)
{
File in("FFC_1_fingerprint_duplicates.txt", File::MODE_IN);
String line;
unsigned int parent;
vector<String> line_split;
while(getline(in, line))
{
if (!line.hasPrefix("#"))
{
line.split(line_split);
parent = line_split[0].toInt();
mol_identifiers.insert(make_pair(parent, set<String>()));
mol_identifiers[parent].insert((++line_split.begin()), line_split.end());
}
}
in.close();
}
void writeConnectedComponents(const vector<unsigned int>& m_indices,
const vector<vector<unsigned int> >& ccs,
const multimap<unsigned int, unsigned int>& cc_sizes,
const vector<vector<pair<unsigned int, float> > >& nn_data,
const float sim_cutoff)
{
File out("FFC_2_connected_components.txt", File::MODE_OUT);
out << "# FFC CONNECTED COMPONENTS" << endl;
out << "# at similarity cutoff: " << sim_cutoff << endl;
out << "# Connected components are separated by a '//' prefixed line." << endl;
out << "# SRC_NODE_ID: global internal (fingerprint unique) id of source node." << endl;
out << "# DST_NODE_INDEX: index of nearest neighbour within connected component vector." << endl;
out << "# TANIMOTO_SIM: tanimoto similarity. If TANIMOTO_SIM == -1.0, no nearest neighbour information hass been calculated." << endl;
out << "# CMPD_IDS: Comma separated list of original compound id(s) which map onto this SRC_NODE_ID." << endl;
out << "SRC_NODE_ID DST_NODE_INDEX TANIMOTO_SIM CMPD_IDS" << endl;
boost::unordered_map<unsigned int, set<String> > mol_identifiers;
readMoleculeIdentifiers(mol_identifiers);
String cids;
set<String>::iterator it;
multimap<unsigned int, unsigned int>::const_reverse_iterator iter;
for (iter=cc_sizes.rbegin(); iter!=cc_sizes.rend(); ++iter)
{
vector<unsigned int> cc = ccs[iter->second];
vector<pair<unsigned int, float> > nnd = nn_data[iter->second];
for (unsigned int i=0; i!=cc.size(); ++i)
{
it=mol_identifiers[m_indices[cc[i]]].begin();
cids = *it;
for (++it; it!=mol_identifiers[m_indices[cc[i]]].end(); ++it)
{
cids += "," + *it;
}
out << m_indices[cc[i]] << " " << m_indices[nnd[i].first] << " " << nnd[i].second << " " << cids << endl;
}
out << "//" << endl;
}
out.close();
}
void writeConnectedComponents(const vector<unsigned int>& m_indices,
const ClusterMap& clmap,
const NNData& nn,
const float sim_cutoff)
{
File out("FFC_2_connected_components.txt", File::MODE_OUT);
out << "# FFC CONNECTED COMPONENTS" << endl;
out << "# at similarity cutoff: " << sim_cutoff << endl;
out << "# Connected components are separated by a '//' prefixed line." << endl;
out << "# SRC_NODE_ID: global internal (fingerprint unique) id of source node." << endl;
out << "# DST_NODE_INDEX: index of nearest neighbour within connected component vector." << endl;
out << "# TANIMOTO_SIM: tanimoto similarity. If TANIMOTO_SIM == -1.0, no nearest neighbour information hass been calculated." << endl;
out << "# CMPD_IDS: Comma separated list of original compound id(s) which map onto this SRC_NODE_ID." << endl;
out << "SRC_NODE_INDEX DST_NODE_INDEX TANIMOTO_SIM CMPD_IDS" << endl;
boost::unordered_map<unsigned int, set<String> > mol_identifiers;
readMoleculeIdentifiers(mol_identifiers);
set<String>::iterator it;
ClusterMap::const_reverse_iterator clmap_iter = clmap.rbegin();
for (; clmap_iter!=clmap.rend(); ++clmap_iter)
{
map<unsigned int, vector<unsigned int> >::const_iterator iter;
for (iter=clmap_iter->second.begin(); iter!=clmap_iter->second.end(); ++iter)
{
vector<unsigned int> cc = iter->second;
vector<pair<unsigned int, float> > nn_tmp = (nn.find(iter->first))->second;
for (unsigned int i=0; i!=cc.size(); ++i)
{
it = mol_identifiers[m_indices[cc[i]]].begin();
String cids = *it;
for (++it; it!=mol_identifiers[m_indices[cc[i]]].end(); ++it)
{
cids += "," + *it;
}
out << m_indices[cc[i]] << " " << m_indices[nn_tmp[i].first] << " " << nn_tmp[i].second << " " << cids << endl;
}
out << "//" << endl;
}
}
out.close();
return;
}
bool readFingerprints(const String& input_file, vector<vector<unsigned short> >& mol_features, vector<String>& mol_identifiers)
{
if (!MolFileFactory::isFileExtensionSupported(input_file))
{
// Assuming space separated CSV file which contains fingerprints
if (fp_col == -1)
{
Log.error() << "-- FAILED: For comma separated smiles input files please specify the column number (fp_col > 0) which contains the fingerprints." << endl;
Log.error() << endl;
return false;
}
if (input_file.hasSuffix(".gz"))
{
String tmp_unzipped;
File::createTemporaryFilename(tmp_unzipped);
LineBasedFile unzipped(tmp_unzipped, File::MODE_OUT);
File zipped(input_file, File::MODE_IN | File::MODE_BINARY);
iostreams::filtering_streambuf<iostreams::input> gzip_in;
gzip_in.push(iostreams::gzip_decompressor());
gzip_in.push(zipped);
iostreams::copy(gzip_in, unzipped);
zipped.close();
unzipped.reopen(File::MODE_IN);
readFingerprintsCSV(unzipped, mol_features, mol_identifiers);
unzipped.close();
File::remove(tmp_unzipped);
}
else
{
LineBasedFile lbf(input_file, File::MODE_IN);
readFingerprintsCSV(lbf, mol_features, mol_identifiers);
lbf.close();
}
}
else
{
if (fp_tag == " ")
{
Log.error() << "-- FAILED: For SDF input files please specify the tag which contains the fingerprints." << endl;
Log.error() << endl;
return false;
}
if (id_tag == " ")
{
Log.error() << "-- FAILED: For SDF input files please specify the tag which contains the molecule identifier." << endl;
Log.error() << endl;
return false;
}
GenericMolFile* lib = MolFileFactory::open(input_file, File::MODE_IN);
if (lib == NULL)
{
Log.error() << "-- FAILED: Specified library input could not be opened." << endl;
Log.error() << "--" << endl;
return false;
}
SDFile* lib_sdf = dynamic_cast<SDFile*>(lib);
if (lib_sdf)
{
is_lib_sdf = true;
lib_sdf->disableAtoms();
readFingerprintsSDF(lib_sdf, mol_features, mol_identifiers);
lib_sdf->close();
delete lib_sdf;
}
else
{
Log.error() << "-- FAILED: Input file has an unsupported format." << endl;
Log.error() << endl;
lib->close();
delete lib;
return false;
}
}
if (mol_features.empty())
{
Log.error() << "-- FAILED: Input file empty or wrong fingerprint tags or columns specified." << endl;
Log.error() << endl;
return false;
}
return true;
}
bool connectedComponentsMemoryEstimation(const unsigned int n_items, const unsigned int n_threads, const unsigned int b_size)
{
LongIndex threaded_nn_data_size = (n_threads + 1) * n_items * ( sizeof(unsigned int) + sizeof(float) );
LongIndex cc_matrices_size = n_threads * sizeof(unsigned short) * b_size * (b_size + 1);
LongIndex mem_Bytes = threaded_nn_data_size + cc_matrices_size;
LongIndex total_mem = SysInfo::getTotalMemory();
bool proceed = true;
if (total_mem == -1 || mem_Bytes / (double)total_mem > 0.5)
{
Log << "\n++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++" << endl;
Log << "++ WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING" << endl;
Log << "++" << endl;
Log << "++ The application will use at least >> " << (mem_Bytes / 1.074e+9) << " GB << of memory" << endl;
Log << "++ DO YOU WANT TO PROCEED AT YOUR OWN RISK? [yes | no]" << endl;
Log << "++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++\n" << endl;
String proceed = "no";
getline(cin, proceed);
String decision = "no";
getline(cin, decision);
if (decision != "yes")
{
proceed = false;
}
}
return proceed;
}
bool clusteringMemoryEstimation(const LongSize cc_max, const unsigned int n_threads, const unsigned int b_size)
{
LongIndex cluster_data_size = (2 * cc_max - 1) * 100;
LongIndex thread_data_size = (n_threads + 1) * cc_max * ( sizeof(unsigned int) + sizeof(float) );
thread_data_size += n_threads * sizeof(unsigned short) * b_size * (b_size + 1);
thread_data_size += (n_threads) * 100 * cc_max * sizeof(double);
LongIndex mem_Bytes = cluster_data_size + thread_data_size;
LongIndex total_mem = SysInfo::getTotalMemory();
bool proceed = true;
if (total_mem == -1 || mem_Bytes / (double)total_mem > 0.5)
{
Log << "\n++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++" << endl;
Log << "++ WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING" << endl;
Log << "++" << endl;
Log << "++ The largest connected component has >> " << cc_max << " members <<" << endl;
Log << "++ Clustering of this component using current settings will use at least >> " << (mem_Bytes / 1.074e+9) << " GB << of memory" << endl;
Log << "++ DO YOU WANT TO PROCEED AT YOUR OWN RISK? [yes | no]" << endl;
Log << "++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++\n" << endl;
String decision = "no";
getline(cin, decision);
if (decision != "yes")
{
proceed = false;
}
}
return proceed;
}
unsigned int getIDMin(vector<unsigned int>& ids)
{
unsigned int min = UINT_MAX;
for (unsigned int i=0; i!=ids.size(); ++i)
{
if (ids[i] < min)
{
min = ids[i];
}
}
return min;
}
int main(int argc, char* argv[])
{
CommandlineParser parpars("FingerprintSimilarityClustering", "fast clustering of compounds using 2D binary fingerprints", VERSION, String(__DATE__), "Chemoinformatics");
parpars.registerMandatoryInputFile("t", "Target library input file");
parpars.registerMandatoryIntegerParameter("f", "Fingerprint format [1 = binary bitstring, 2 = comma separated feature list]");
parpars.registerOptionalIntegerParameter("fp_col", "Column number for comma separated smiles input which contains the fingerprint", -1);
parpars.registerOptionalIntegerParameter("id_col", "Column number for comma separated smiles input which contains the molecule identifier", -1);
parpars.registerOptionalStringParameter("fp_tag", "Tag name for SDF input which contains the fingerprint", " ");
parpars.registerOptionalStringParameter("id_tag", "Tag name for SDF input which contains the molecule identifier", " ");
parpars.registerOptionalDoubleParameter("tc", "Tanimoto cutoff [default: 0.7]", 0.7);
parpars.registerOptionalIntegerParameter("cc", "Clustering size cutoff [default: 1000]", 1000);
parpars.registerOptionalIntegerParameter("l", "Number of fingerprints to read", 0);
parpars.registerOptionalStringParameter("nt", "Number of parallel threads to use. To use all possible threads enter <max> [default: 1]", "1");
parpars.registerFlag("sdf_out", "If input file has SD format, this flag activates writing of clustering information as new tags in a copy of the input SD file.");
parpars.setSupportedFormats("t","smi, smi.gz, csv, csv.gz, txt, txt.gz, sdf, sdf.gz");
parpars.setParameterRestrictions("f", 1, 2);
String man = "This tool performs a fast and deterministic semi-hierarchical clustering of input compounds encoded as 2D binary fingerprints.\n\n\
The method is a multistep workflow which first reduces the number of input fingerprints by removing duplicates. This unique set is forwarded to connected\n\
components decomposition by calculating all pairwise Tanimoto similarities and application of a similarity cutoff value. As a third step, all connected components\n\
which exceed a predefined size are hierarchically clustered using the average linkage clustering criterion. The Kelley method is applied on every hierarchical clustering\n\
to determine a level for cluster selection. Finally, the fingerprint duplicates are remapped onto the final clusters which contain their representatives. \n\n\
For every final cluster a medoid is calulated. For a single cluster multiple medoids are possible because fingerprint duplicates of a medoid are also marked as medoid.\n\n\
For every compound the output yields a cluster ID, a medoid tag where '1' indicates the cluster medoid(s) and the average similarity of the compound to all other \n\
cluster members. If the output format is SD, these properties are added as new tags.\n\n\
======================================================================================================================================================\n\n\
Examples:\n\n\
$ FingerprintSimilarityClustering -t target.sdf -fp_tag FPRINT -f 1 -id_tag NAME\n\
tries to read fingerprints as binary bitstrings (-f 1) from tag <FPRINT> and compound IDs from tag <NAME> of target.sdf input file.\n\
The clustering workflow described is executed on the input molecules with default values.\n\n\
$ FingerprintSimilarityClustering -t target.csv -fp_col 3 -f 2 -id_col 1\n\
tries to read fingerprints as comma separated integer feature list (-f 2) from column 3 and IDs from column 1 out of a space separated CSV file.\n\
The clustering workflow described is executed on the input molecules with default values.\n\n\
$ FingerprintSimilarityClustering -t target.sdf -fp_tag FPRINT -f 1 -id_tag NAME -nt max\n\
Same as first example but executed in parallel mode using as many threads as available.\n\n\
$ FingerprintSimilarityClustering -t target.sdf -fp_tag FPRINT -f 1 -id_tag NAME -tc 0.5 -cc 50\n\
Same as first example but using modified parameters for similarity network generation (tc 0.5) and size of connected components to be clustered (-cc 50).";
parpars.setToolManual(man);
parpars.parse(argc, argv);
// Set read and parameters
fprint_format = parpars.get("f").toInt();
float sim_cutoff = parpars.get("tc").toFloat();
unsigned int size_cutoff = parpars.get("cc").toInt();
limit = parpars.get("l").toInt();
if (limit == 0)
{
limit = std::numeric_limits<unsigned int>::max();
}
unsigned int n_threads = 1;
if (parpars.get("nt") != "1")
{
if (parpars.get("nt") == "max")
{
n_threads = SysInfo::getNumberOfProcessors();
}
else
{
if (parpars.get("nt").toInt() > SysInfo::getNumberOfProcessors())
{
n_threads = SysInfo::getNumberOfProcessors();
Log.info() << "++ INFO: Specified number of threads exceeds available threads. Setting number to available threads." << endl;
}
else
{
n_threads = parpars.get("nt").toInt();
}
}
}
if (parpars.get("fp_col") != "-1")
{
fp_col = parpars.get("fp_col").toInt() - 1;
}
else
{
fp_col = -1;
}
if (parpars.get("id_col") != "-1")
{
id_col = parpars.get("id_col").toInt() - 1;
}
else
{
id_col = -1;
}
if (parpars.get("fp_tag") != " ")
{
fp_tag = parpars.get("fp_tag");
}
if (parpars.get("id_tag") != " ")
{
id_tag = parpars.get("id_tag");
}
// Read library fingerprints
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ Read target library ... " << endl;
is_lib_sdf = false;
vector<String> mol_identifiers;
vector<vector<unsigned short> > mol_features;
bool read_success = readFingerprints(parpars.get("t"), mol_features, mol_identifiers);
if (!read_success)
{
return 1;
}
Log.level(10) << "++" << endl;
Options options;
options.setDefaultInteger(BinaryFingerprintMethods::Option::BLOCKSIZE, 500);
options.setDefaultReal(BinaryFingerprintMethods::Option::SIM_CUTOFF, sim_cutoff);
options.setDefaultInteger(BinaryFingerprintMethods::Option::N_THREADS, n_threads);
options.setDefaultInteger(BinaryFingerprintMethods::Option::MAX_CLUSTERS, 1000);
options.setDefaultInteger(BinaryFingerprintMethods::Option::VERBOSITY, 15);
// ------------------------------------------------------------------------------------------
// Create unique fingerprint set
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ STEP 1: Unique Fingerprints Filter" << endl;
Log.level(10) << "++ Fingerprints total : " << mol_features.size() << endl;
uniqueFingerprintsFilter(mol_features, mol_identifiers);
mol_identifiers.clear();
Log.level(10) << "++ Fingerprints unique: " << mol_features.size() << endl;
Log.level(10) << "++" << endl;
// ------------------------------------------------------------------------------------------
// Connected components decomposition
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ STEP 2: Connected components decomposition" << endl;
vector<unsigned int> m_indices;
vector<vector<unsigned int> > ccs;
vector<vector<pair<unsigned int, float> > > nn_tmp;
// Add all input molecules for connected component calculation
for (unsigned int i=0; i!=mol_features.size(); ++i)
{
m_indices.push_back(i);
}
// MAKE ESTIMATION FOR SYSTEM RESOURCE DEMANDS
bool proceed = connectedComponentsMemoryEstimation(m_indices.size(), n_threads, options.getInteger(BinaryFingerprintMethods::Option::BLOCKSIZE));
if (!proceed)
{
Log << "++" << endl;
Log << "++ DONE" << endl;
Log << "++" << endl;
return 0;
}
BinaryFingerprintMethods bfm(options, mol_features);
bool success = bfm.connectedComponents(m_indices, ccs, nn_tmp, sim_cutoff, true);
if (!success)
{
Log.error() << "-- FAILED: fast compound clustering was not successful." << endl;
Log.error() << endl;
return 1;
}
// Store connected components in final cluster data structure
// Additionally map the nearest neighbour data appropriately.
ClusterMap clmap;
NNData nn;
for (unsigned int i=0; i!=ccs.size(); ++i)
{
unsigned int size = ccs[i].size();
unsigned int idmin = getIDMin(ccs[i]);
// Insert connected components into ClusterMap
map<unsigned int, vector<unsigned int> >& sizemap = clmap[size];
sizemap[idmin] = ccs[i];
// Insert nearest neighbour data
nn.insert(make_pair(idmin, nn_tmp[i]));
}
// Write connected components to file
writeConnectedComponents(m_indices, clmap, nn, sim_cutoff);
ccs.clear();
nn_tmp.clear();
// ------------------------------------------------------------------------------------------
// Clustering of connected components
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ STEP 3: Average linkage clustering of connected components" << endl;
// MAKE ESTIMATION FOR SYSTEM RESOURCE DEMANDS
LongSize cc_max = clmap.rbegin()->first;
proceed = clusteringMemoryEstimation(cc_max, n_threads, options.getInteger(BinaryFingerprintMethods::Option::BLOCKSIZE));
if (!proceed)
{
Log << "++" << endl;
Log << "++ DONE" << endl;
Log << "++" << endl;
return 0;
}
ClusterMap tmp_clmap;
vector<unsigned int> cl_indices;
map<unsigned int, vector<unsigned int> > cluster_selection;
// Connected components that will be clustered must subsequently be removed from the main ClusterMap (clmap).
// The corresponding keys are stored here:
map<unsigned int, vector<unsigned int> > remove;
for (ClusterMapIterator size_iter=clmap.begin(); size_iter!=clmap.end(); ++size_iter)
{
for (map<unsigned int, vector<unsigned int> >::iterator cl_iter=size_iter->second.begin(); cl_iter!=size_iter->second.end(); ++cl_iter)
{
if (size_iter->first > size_cutoff)
{
vector<unsigned int>& tmp_cl = cl_iter->second;
cl_indices.clear();
for (unsigned int i=0; i!=tmp_cl.size(); ++i)
{
cl_indices.push_back(m_indices[tmp_cl[i]]);
}
Log.level(10) << "++ CONNECTED COMPONENT SIZE: " << size_iter->first << endl;
bfm.averageLinkageClustering(cl_indices, nn[cl_iter->first], cluster_selection);
Log.level(10) << "++" << endl;
// Retrieve every cluster
for (map<unsigned int, vector<unsigned int> >::iterator sel_iter=cluster_selection.begin(); sel_iter!=cluster_selection.end(); ++sel_iter)
{
unsigned int idmin = UINT_MAX;
tmp_cl.clear();
for (unsigned int i=0; i!=sel_iter->second.size(); ++i)
{
tmp_cl.push_back(cl_indices[sel_iter->second[i]]);
if (tmp_cl[tmp_cl.size() - 1] < idmin)
{
idmin = tmp_cl[tmp_cl.size() - 1];
}
}
// Insert clusters into tmp_map
map<unsigned int, vector<unsigned int> >& sizemap = tmp_clmap[tmp_cl.size()];
sizemap[idmin] = tmp_cl;
}
// Store just processed connected component as remove candidate from main clmap
vector<unsigned int>& tmp = remove[size_iter->first];
tmp.push_back(cl_iter->first);
}
nn.erase(cl_iter->first);
}
}
// Update main ClusterMap clmap in two steps:
// Step 1: remove connected components that were clustered
for (map<unsigned int, vector<unsigned int> >::iterator it=remove.begin(); it!=remove.end(); ++it)
{
map<unsigned int, vector<unsigned int> >& tmp = clmap[it->first];
for (unsigned int i=0; i!=it->second.size(); ++i)
{
tmp.erase(it->second[i]);
}
if (tmp.empty())
{
clmap.erase(it->first);
}
}
// Step 2: insert new clusters
for (ClusterMap::iterator it=tmp_clmap.begin(); it!=tmp_clmap.end(); ++it)
{
map<unsigned int, vector<unsigned int> >& tmp = clmap[it->first];
tmp.insert(it->second.begin(), it->second.end());
}
// Clean up
tmp_clmap.clear();
// ------------------------------------------------------------------------------------------
// Calculate Medoid of every cluster
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ STEP 4: Calculate medoids for every cluster" << endl;
bfm.setVerbosityLevel(0);
unsigned int medoid_index;
vector<float> tmp_avg_sims;
map<unsigned int, pair<unsigned int, vector<float> > > medoids_avg_sims;
for (ClusterMap::iterator size_iter=clmap.begin(); size_iter!=clmap.end(); ++size_iter)
{
for (map<unsigned int, vector<unsigned int> >::iterator cl_iter=size_iter->second.begin(); cl_iter!=size_iter->second.end(); ++cl_iter)
{
if (bfm.calculateSelectionMedoid(cl_iter->second, medoid_index, tmp_avg_sims))
{
medoids_avg_sims[cl_iter->first] = make_pair(medoid_index, tmp_avg_sims);
tmp_avg_sims.clear();
}
else
{
Log.error() << "-- WARNING: medoid calculation failed for unkown reason" << endl;
}
}
}
// ------------------------------------------------------------------------------------------
// Remap fingerprint duplicates
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ STEP 5: Remap fingerprint duplicates" << endl;
boost::unordered_map<unsigned int, set<String> > identifiers;
readMoleculeIdentifiers(identifiers);
// Store final cluster information
map<String, pair<unsigned int, pair<unsigned int, float> > > final_clusters;
unsigned int is_medoid;
unsigned int cluster_id = 1;
for (ClusterMap::iterator size_iter=clmap.begin(); size_iter!=clmap.end(); ++size_iter)
{
for (map<unsigned int, vector<unsigned int> >::iterator cl_iter=size_iter->second.begin(); cl_iter!=size_iter->second.end(); ++cl_iter)
{
if (cl_iter->second.size() == 1)
{
// Singleton cluster
is_medoid = 1;
float avg_sim = 1.0;
for (set<String>::iterator id_iter=identifiers[cl_iter->second[0]].begin(); id_iter!=identifiers[cl_iter->second[0]].end(); ++id_iter)
{
final_clusters[*id_iter] = make_pair(cluster_id, make_pair(is_medoid, avg_sim));
}
}
else
{
medoid_index = medoids_avg_sims[cl_iter->first].first;
tmp_avg_sims = medoids_avg_sims[cl_iter->first].second;
for (unsigned int i=0; i!=cl_iter->second.size(); ++i)
{
if (i == medoid_index)
{
is_medoid = 1;
}
else
{
is_medoid = 0;
}
for (set<String>::iterator id_iter=identifiers[cl_iter->second[i]].begin(); id_iter!=identifiers[cl_iter->second[i]].end(); ++id_iter)
{
final_clusters[*id_iter] = make_pair(cluster_id, make_pair(is_medoid, tmp_avg_sims[i]));
}
}
}
++cluster_id;
cl_iter->second.clear();
}
size_iter->second.clear();
}
// ------------------------------------------------------------------------------------------
// Write final clustering
Log.level(10) << "++ --------------------------------------------------------" << endl;
Log.level(10) << "++ STEP 6: Write final clustering" << endl;
if (parpars.has("sdf_out") && is_lib_sdf)
{
GenericMolFile *lib = MolFileFactory::open(parpars.get("t"), File::MODE_IN);
SDFile *lib_sdf = dynamic_cast<SDFile*>(lib);
GenericMolFile* tmp_out = MolFileFactory::open("FFC_3_final_clustering.sdf", File::MODE_OUT);
SDFile* out_sdf = dynamic_cast<SDFile*>(tmp_out);
String identifier;
String cluster_tag = fp_tag + "_ClusterID";
String medoid_tag = fp_tag + "_ClusterMedoid";
String avg_sim_tag = fp_tag + "_AverageSim";
Molecule* mol = lib_sdf->read();
while (mol)
{
identifier = mol->getProperty(id_tag).getString();
if (final_clusters.find(identifier)!=final_clusters.end())
{
mol->setProperty(cluster_tag, final_clusters[identifier].first);
mol->setProperty(medoid_tag, final_clusters[identifier].second.first);
mol->setProperty(avg_sim_tag, final_clusters[identifier].second.second);
}
else
{
mol->setProperty(cluster_tag, "");
mol->setProperty(medoid_tag, 0);
mol->setProperty(avg_sim_tag, 0.0);
}
out_sdf->write(*mol);
delete mol;
mol = lib_sdf->read();
}
out_sdf->close();
delete out_sdf;
lib_sdf->close();
delete lib_sdf;
}
else
{
File out("FFC_3_final_clustering.csv", File::MODE_OUT);
out << "# FFC FINAL CLUSTERING" << endl;
out << "# Similarity cutoff: " << sim_cutoff << endl;
out << "# Size cutoff: " << size_cutoff << endl;
out << "# MolID: external molecule identifier." << endl;
out << "# ClusterID: cluster identifier is a integer value [1-n] where n is the total number of clusters." << endl;
out << "# ClusterMedoid: 1 = molecule is medoid of its cluster. 0 = not medoid of cluster." << endl;
out << "# Multiple medoids are possible due to duplicate fingerprints. All duplicates of a medoid are also marked as medoids." << endl;
out << "# AverageSim: Average similarity of fingerprint to all others in cluster." << endl;
out << "MolID ClusterID ClusterMedoid AverageSim" << endl;
map<String, pair<unsigned int, pair<unsigned int, float> > >::iterator final_it = final_clusters.begin();
for (; final_it!=final_clusters.end(); ++final_it)
{
out << final_it->first << " " << final_it->second.first << " " << final_it->second.second.first << " " << final_it->second.second.second << endl;
}
out.close();
}
Log << "++" << endl;
Log << "++ DONE" << endl;
Log << "++" << endl;
return 0;
}
|