1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/STRUCTURE/bindingPocketProcessor.h>
#include <BALL/FORMAT/PDBFile.h>
#include <BALL/FORMAT/molFileFactory.h>
#include <BALL/FORMAT/commandlineParser.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/DOCKING/COMMON/constraints.h>
#include <BALL/DOCKING/COMMON/dockingAlgorithm.h>
#include "version.h"
#include <iostream>
using namespace std;
using namespace BALL;
//using namespace BALL::Docking;
void createReferenceArea(const vector<vector<std::pair<Vector3, double> > >& layers, const Vector3& ref_center, ReferenceArea*& ref_area, String filename, Molecule* ligand)
{
Molecule mol;
multimap<double, Vector3> dist_to_position;
for (Size i = 0; i < layers.size(); i++)
{
for (Size j = 0; j < layers[i].size(); j++)
{
double dist = layers[i][j].first.getDistance(ref_center);
if (dist < 12)
{
dist_to_position.insert(make_pair(dist, layers[i][j].first));
}
}
}
if (dist_to_position.empty())
{
Log.error() << "[Error:] No surface points in the neighborhood of the reference ligand found. Please check the location of your reference ligand!" << endl;
exit(1);
}
Vector3 origin = ref_center - Vector3(10, 10, 10);
HashGrid3<Vector3> grid(origin, 20, 20, 20, 2);
// add pocket-point that is nearest to the geometrical center of the reference ligand to the grid
multimap<double, Vector3>::iterator it = dist_to_position.begin();
grid.insert(it->second, it->second);
it++;
for (; it != dist_to_position.end(); it++)
{
HashGridBox3<Vector3>* current_box = grid.getBox(it->second);
Position x, y, z;
grid.getIndices(*current_box, x, y, z);
if (x > 1) x--;
if (y > 1) y--;
if (z > 1) z--;
// search pocket-points near the current one
bool found_nearby_point = 0;
for (Size i = x; i < x+3 && i < 20; i++)
{
for (Size j = y; j < y+3 && j < 20; j++)
{
for (Size k = z; k < z+3 && k < 20; k++)
{
const HashGridBox3<Vector3>* box = grid.getBox(i, j, k);
for (HashGridBox3 < Vector3 > ::ConstDataIterator b_it = box->beginData();
+b_it; b_it++)
{
if (it->second.getDistance(*b_it) < 1.5)
{
found_nearby_point = true;
break;
}
}
}
}
}
if (found_nearby_point)
{
current_box->insert(it->second);
if (filename != "")
{
Atom* atom = new Atom;
atom->setElement(PTE_::getElement(Element::CARBON));
atom->setPosition(it->second);
mol.insert(*atom);
}
}
}
if (filename != "")
{
GenericMolFile* output = MolFileFactory::open(filename, ios::out, "mol2");
*output << mol;
delete output;
}
// find min and max
double min_x = 9999; double max_x = -9999;
double min_y = 9999; double max_y = -9999;
double min_z = 9999; double max_z = -9999;
for (HashGrid3 < Vector3 > ::BoxIterator it = grid.beginBox(); it != grid.endBox(); it++)
{
for (HashGridBox3<Vector3>::ConstDataIterator b_it = it->beginData();
+b_it; b_it++)
{
const Vector3& p = *b_it;
if (p[0] < min_x) min_x = p[0];
if (p[0] > max_x) max_x = p[0];
if (p[1] < min_y) min_y = p[1];
if (p[1] > max_y) max_y = p[1];
if (p[2] < min_z) min_z = p[2];
if (p[2] > max_z) max_z = p[2];
}
}
// check size of detected pocket
double volume = (max_x-min_x)*(max_y-min_y)*(max_z-min_z);
if (volume < 100)
{
Log.level(20)<<"Detected pocket is very small ( < 100A^3) and therefore rejected."<<endl;
ref_area = 0;
return;
}
Vector3 p1(min_x, min_y, min_z);
Vector3 p2(max_x, min_y, min_z);
Vector3 p3(max_x, max_y, min_z);
Vector3 p4(max_x, max_y, max_z);
ref_area = new ReferenceArea(p1, p2, p3, p4, true, 0.5, 1e11);
ref_area->calculateScore(ligand);
double fraction = ref_area->getContainedAtoms();
Log.level(10)<<"Fraction of atoms of reference ligand located in detected binding pocket: "<<fraction<<endl;
ref_area->setNumberDesiredAtoms(fraction);
ref_area->setName("Pocket found by PocketDetector");
}
int main (int argc, char **argv)
{
CommandlineParser parpars("PocketDetector", "detect binding pocket", VERSION, String(__DATE__), "Docking");
parpars.registerMandatoryInputFile("rec", "receptor pdb-file");
parpars.registerMandatoryInputFile("rl", "reference ligand");
parpars.registerMandatoryOutputFile("o", "output file");
parpars.registerOptionalInputFile(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME, "input ini file");
parpars.registerOptionalOutputFile("mol_out", "output file for pseudo-atoms describing pocket (for visualization purposes)");
String man = "This tool tries to detect the binding pocket in which the reference ligand is located.\nTherefore, probe atoms are placed above the protein surface at positions of relative deep burial. The cluster of probe atoms around the geometric center of the reference ligand is used for the description of the binding pocket.\n\nAs input we need:\n\
* a file containing a protonated protein in pdb-format. Furthermore, it should contain only relevant (i.e. strongly bound) water molecules as detected by WaterFinder.\n\
* a file containing a reference ligand.\n\
This reference ligand should be located in the binding pocket.\n\
Supported formats are mol2, sdf or drf (DockResultFile, xml-based).\n\nOutput of this tool is a docking configuration file that contains the description of the detected binding pocket. This file should in following pipeline steps be specified for docking and rescoring.";
parpars.setToolManual(man);
parpars.setSupportedFormats("rec","pdb");
parpars.setSupportedFormats("rl",MolFileFactory::getSupportedFormats());
parpars.setSupportedFormats(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME,"ini");
parpars.setSupportedFormats("o","ini");
parpars.setSupportedFormats("mol_out",MolFileFactory::getSupportedFormats());
parpars.parse(argc, argv);
PDBFile input(parpars.get("rec"));
Protein p;
input >> p;
GenericMolFile* input2 = MolFileFactory::open(parpars.get("rl"));
Molecule* ligand = input2->read();
delete input2;
Vector3 lig_center(0, 0, 0);
Size no_atoms = 0;
for (AtomConstIterator it = ligand->beginAtom(); +it; ++it, no_atoms++)
{
lig_center += it->getPosition();
}
lig_center /= no_atoms;
BindingPocketProcessor bpp;
p.apply(bpp);
Molecule mol;
const vector<vector<std::pair<Vector3, double> > >& layers = bpp.getLayers();
/*
cout<<"number of layers = "<<layers.size()<<endl;
for (Size i = 0; i < layers.size(); i++)
{
for (Size j = 0; j < layers[i].size(); j++)
{
double dist = layers[i][j].first.getDistance(lig_center);
if (dist < 12)
{
Atom* atom = new Atom;
atom->setElement(PTE_::getElement(i));
atom->setPosition(layers[i][j].first);
mol.insert(*atom);
}
}
}
GenericMolFile* output = MolFileFactory::open("probeatoms.mol2", ios::out);
*output << mol;
delete output;
*/
Options option;
list<Constraint*> constraints;
if (parpars.has(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME))
{
DockingAlgorithm::readOptionFile(parpars.get(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME), option, constraints, ligand);
}
String outmol_filename = "";
if (parpars.has("mol_out"))
{
outmol_filename = parpars.get("mol_out");
}
ReferenceArea* ref_area = NULL;
createReferenceArea(layers, lig_center, ref_area, outmol_filename, ligand);
if (ref_area) constraints.push_back(ref_area);
DockingAlgorithm::writeOptionFile(parpars.get("o"), option, constraints);
if (ref_area) delete ref_area;
return 0;
}
|