1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/FORMAT/PDBFile.h>
#include <BALL/FORMAT/molFileFactory.h>
#include <BALL/FORMAT/commandlineParser.h>
#include <BALL/DOCKING/COMMON/structurePreparer.h>
#include <BALL/DOCKING/COMMON/dockingAlgorithm.h>
#include <BALL/COMMON/exception.h>
#include <BALL/DATATYPE/options.h>
#include <BALL/KERNEL/molecularInteractions.h>
#include <BALL/KERNEL/protein.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/SCORING/FUNCTIONS/PLPScoring.h>
#include <BALL/SCORING/FUNCTIONS/MMScoring.h>
#include <BALL/DOCKING/COMMON/gridAnalysis.h>
#include <BALL/STRUCTURE/fragmentDB.h>
#include <set>
#include "version.h"
using namespace BALL;
using namespace std;
Residue* createNewWater(Vector3 center = Vector3(0, 0, 0))
{
Residue* water = new Residue;
water->setName("HOH");
PDBAtom* oxygen = new PDBAtom;
oxygen->setElement(PTE_::getElement("O"));
oxygen->setPosition(Vector3(center.x, center.y, center.z));
PDBAtom* h1 = new PDBAtom;
h1->setElement(PTE_::getElement("H"));
h1->setPosition(Vector3(center.x+0.2774, center.y+0.8929, center.z+0.2544));
PDBAtom* h2 = new PDBAtom;
h2->setElement(PTE_::getElement("H"));
h2->setPosition(Vector3(center.x+0.6068, center.y-0.2383, center.z-0.7169));
h2->createBond(*oxygen);
h1->createBond(*oxygen);
water->insert(*oxygen);
water->insert(*h1);
water->insert(*h2);
return water;
}
// ab initio, grid-based, search
void findPutativeWaterPositions(ScoringFunction* sf, System& water_system, const double& threshold, StructurePreparer* sp, String& par_file)
{
Protein* protein = new Protein;
water_system.insert(*protein);
Residue* water = createNewWater();
sp->prepare(water, par_file);
GridAnalysis ga(sf, water);
ga.setResolution(1.4);
cout<<"starting grid analysis ..."<<flush;
RegularData3D* grid = ga.calculate();
cout<<" finished."<<endl<<flush;
delete water;
RegularData3D::IndexType size = grid->getSize();
multimap<double, Residue*> water_map;
for (int i = 0; i < (int)size.x; i++)
{
for (int j = 0; j < (int)size.y; j++)
{
for (int k = 0; k < (int)size.z; k++)
{
RegularData3D::IndexType index(i, j, k);
Vector3 position = grid->getCoordinates(index);
double score = grid->getData(index);
if (score < threshold)
{
// -- check for other, better scored water molecules near the current water molecule
// -- if none are found, create new water molecule at current position
// and add it to water_system
bool ok = 1;
int i2 = i-1;
if (i2 < 0) i2 = 0;
for (; i2 < i+1 && i2 < (int)size.x; i2++)
{
int j2 = j-1;
if (j2 < 0) j2 = 0;
for (; j2 < j+1 && j2 < (int)size.y; j2++)
{
int k2 = k-1;
if (k2 < 0) k2 = 0;
for (; k2 < k+1 && k2 < (int)size.z; k2++)
{
if (i2 == i && j2 == j && k2 == k)
{
continue;
}
RegularData3D::IndexType index2(i2, j2, k2);
double score2 = grid->getData(index2);
if (score2 < score)
{
ok = false;
break;
}
}
}
}
if (ok)
{
Residue* new_water = createNewWater(position);
sp->prepare(new_water, par_file);
water_map.insert(make_pair(score, new_water));
if (water_map.size() > 100)
{
water_map.erase(--water_map.end());
}
}
}
}
}
}
// Add the 100 best putative water positions to water_system
for (multimap < double, Residue* > ::iterator it = water_map.begin(); it != water_map.end(); it++)
{
protein->insert(*it->second);
}
cout<<"found "<<water_map.size()<<" putative water positions."<<endl<<flush;
delete grid;
}
void rotateMolecule(Residue& mol, int axis, int degree, Vector3& center)
{
TMatrix4x4<float> M;
TAngle<float> angle(degree, false);
Vector3 axis_vector(axis == 0, axis == 1, axis == 2);
M.setRotation(angle, axis_vector);
for (AtomIterator it = mol.beginAtom(); it != mol.endAtom(); it++)
{
it->setPosition(M*(it->getPosition()-center)+center);
}
}
void optimizeWaterHydrogens(ResidueIterator& water, Chain& water_chain, System& receptor, Options& option)
{
ResidueIterator next_res = water;
next_res++;
water_chain.remove(*water);
MMScoring scoring_function(receptor, *water, option);
scoring_function.setLigand(*water);
Vector3 center = scoring_function.getLigandCenter();
int best_angle_x = 0;
int best_angle_y = 0;
int best_angle_z = 0;
double best_score = 1e12;
for (Size i = 1; i < 36; i++)
{
rotateMolecule(*water, 0, 10, center);
scoring_function.update();
double score_i = scoring_function.updateScore();
if (score_i < best_score)
{
best_score = score_i;
best_angle_x = i*10;
}
}
rotateMolecule(*water, 0, -350+best_angle_x, center);
for (Size i = 1; i < 36; i++)
{
rotateMolecule(*water, 1, 10, center);
scoring_function.update();
double score_i = scoring_function.updateScore();
if (score_i < best_score)
{
best_score = score_i;
best_angle_y = i*10;
}
}
rotateMolecule(*water, 1, -350+best_angle_y, center);
for (Size i = 1; i < 36; i++)
{
rotateMolecule(*water, 2, 10, center);
scoring_function.update();
double score_i = scoring_function.updateScore();
if (score_i < best_score)
{
best_score = score_i;
best_angle_z = i*10;
}
}
// rotate back to original orientation
rotateMolecule(*water, 2, -350, center);
rotateMolecule(*water, 1, -best_angle_y, center);
rotateMolecule(*water, 0, -best_angle_x, center);
// rotate to best orientation
rotateMolecule(*water, 0, best_angle_x, center);
rotateMolecule(*water, 1, best_angle_y, center);
rotateMolecule(*water, 2, best_angle_z, center);
// re-insert water into protein
if (next_res != water_chain.endResidue())
{
water_chain.insertBefore(*water, *next_res);
}
else water_chain.append(*water);
}
Vector3 calculateMoleculeCenter(const AtomContainer& molecule)
{
Vector3 center(0, 0, 0);
int no_atoms = 0;
for (AtomConstIterator it = molecule.beginAtom(); +it; it++, no_atoms++)
{
center += it->getPosition();
}
center /= no_atoms;
return center;
}
double calculateWaterBinding(ResidueIterator& water, Chain& water_chain, System& receptor, Options& option)
{
ResidueIterator next_res = water;
next_res++;
water_chain.remove(*water);
MMScoring scoring_function(receptor, *water, option);
scoring_function.setLigand(*water);
scoring_function.update();
double score = scoring_function.updateScore();
// re-insert water into protein
if (next_res != water_chain.endResidue())
{
water_chain.insertBefore(*water, *next_res);
}
else water_chain.append(*water);
return score;
}
void removeUnboundWaterNetworks(Chain* water_chain, System& receptor, Options& option, const double& BRIDGE_REC_THRESHOLD)
{
map<Residue*, double> receptor_scores; // binding-energy of water molecules to receptor
list<list<Residue*> > connections; // each list contains one water-network
typedef list<list<Residue*> >::iterator NetworkIterator;
map<Residue*, NetworkIterator> connection_map; // maps each water to the network to which it belongs
// Calculate binding of water molecules to the receptor.
Protein* protein = receptor.getProtein(0);
protein->remove(*water_chain);
for (ResidueIterator res_it1 = water_chain->beginResidue(); res_it1 != water_chain->endResidue(); res_it1++)
{
double rec_score = calculateWaterBinding(res_it1, *water_chain, receptor, option);
receptor_scores.insert(make_pair(&*res_it1, rec_score));
//cout<<"receptor -- "<<res_it1->getID()<<" : "<<rec_score<<endl;
}
// Find out which water molecules are connected to each other.
Chain tmp_chain;
protein->append(tmp_chain);
for (ResidueIterator res_it1 = water_chain->beginResidue(); res_it1 != water_chain->endResidue(); )
{
ResidueIterator next_res1 = res_it1;
next_res1++;
Residue* water1 = &*res_it1;
tmp_chain.insert(*water1); // this also removes the water from 'water_chain' !
for (ResidueIterator res_it2 = water_chain->beginResidue(); res_it2 != water_chain->endResidue(); )
{
if (&*res_it1 == &*res_it2)
{
res_it2++;
continue;
}
ResidueIterator next_res2 = res_it2;
next_res2++;
Residue* water2 = &*res_it2;
tmp_chain.insert(*water2); // this also removes the water from 'water_chain' !
double score = calculateWaterBinding(res_it1, tmp_chain, receptor, option);
tmp_chain.remove(*water2);
if (next_res2 != water_chain->endResidue())
{
water_chain->insertBefore(*water2, *next_res2);
}
else water_chain->append(*water2);
res_it2 = next_res2;
double rec_score = receptor_scores.find(water1)->second;
double water_score_res2 = score-rec_score;
if (water_score_res2 < -1)
{
map<Residue*, NetworkIterator>::iterator search_it1 = connection_map.find(water1);
NetworkIterator list_it;
if (search_it1 != connection_map.end())
{
search_it1->second->push_back(water2);
list_it = search_it1->second;
}
else
{
list<Residue*> clist;
clist.push_back(water1);
clist.push_back(water2);
connections.push_back(clist);
list_it = connections.end();
list_it--;
connection_map.insert(make_pair(water1, list_it));
}
map<Residue*, NetworkIterator>::iterator search_it2 = connection_map.find(water2);
if (search_it2 != connection_map.end() && &*search_it1->second != &*search_it2->second)
{
list<Residue*> clist = *search_it2->second;
for (list<Residue*>::iterator it = clist.begin();
it!=clist.end(); it++)
{
Residue* res3 = *it;
connection_map.erase(res3);
connection_map.insert(make_pair(res3, list_it));
}
list_it->splice(list_it->begin(), clist);
}
connection_map.erase(water2);
connection_map.insert(make_pair(water2, list_it));
}
}
tmp_chain.remove(*water1);
if (next_res1 != water_chain->endResidue())
{
water_chain->insertBefore(*water1, *next_res1);
}
else water_chain->append(*water1);
res_it1 = next_res1;
}
protein->remove(tmp_chain);
// Now, check that each water molecule is either bound strongly to the receptor or is part of a water network that has at least one water that is strongly bound to the receptor.
String removed = "";
for (ResidueIterator res_it = water_chain->beginResidue(); res_it != water_chain->endResidue(); )
{
// The current water itself is strongly bound to the receptor, so do nothing more here.
if (receptor_scores.find(&*res_it)->second < BRIDGE_REC_THRESHOLD)
{
res_it++;
continue;
}
bool receptor_bound = false; // has a connection of the water network to the receptor been found?
// if the current water is part of a water network ..
if (connection_map.find(&*res_it) != connection_map.end())
{
const list<Residue*>& res_connections = *connection_map.find(&*res_it)->second;
for (list < Residue* > ::const_iterator lit = res_connections.begin(); lit != res_connections.end(); lit++)
{
if (receptor_scores.find(*lit)->second < BRIDGE_REC_THRESHOLD)
{
receptor_bound = true;
break;
}
}
}
if (!receptor_bound)
{
ResidueIterator tmp_it = res_it;
tmp_it++;
removed += res_it->getFullName()+res_it->getID()+" ";
water_chain->remove(*res_it);
res_it = tmp_it;
}
else res_it++;
}
if (removed != "")
{
cout<<endl<<"The following water molecules have been removed because they are part of water networks that are not bound strongly to the receptor: "<<removed<<endl<<endl;
}
protein->append(*water_chain);
}
double calculateMinimalDistance(const AtomContainer& ref_ligand, const AtomContainer& water, double threshold)
{
double min_dist = 9999;
for (AtomConstIterator it = ref_ligand.beginAtom(); +it; it++)
{
for (AtomConstIterator it2 = water.beginAtom(); +it2; it2++)
{
double dist = it->getDistance(*it2);
if (dist < threshold) return dist;
if (dist < min_dist) min_dist = dist;
}
}
return min_dist;
}
int main(int argc, char* argv[])
{
CommandlineParser par("WaterFinder", "find strongly bound waters ", VERSION, String(__DATE__), "Docking");
par.registerMandatoryInputFile("rec", "receptor pdb-file");
par.registerMandatoryInputFile("rl", "reference-ligand");
par.registerOptionalInputFile(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME, "configuration file");
par.registerOptionalInputFile("wat", "input pdb-file containing water molecules (if not part of rec.-file)");
par.registerFlag("ai", "use ab-initio water search (ignore water in pdb-file), experimental!");
par.registerOptionalOutputFile("o", "output pdb file");
par.registerOptionalOutputFile("write_ini", "write ini-file w/ default parameters (and don't do anything else)");
String man = "This tool searches for crystal waters that\n\
* either interact very strongly with the receptor\n\
* or that interact strongly with receptor and reference ligand, \n\
thus functioning as a water bridge.\n\nWater molecules in the pdb-structure (i.e. single oxygens) are automatically protonated and rotationally optimized before the search is done.\n\nAs input we need:\n\
* a file containing a protonated protein in pdb-format.\n\
This file should contain water molecules that are to be evaluated by this tool.\n\
However, you can also use a separate pdb-file as input for the water molecules (see below).\n\
* a file containing a reference ligand.\n\
This reference ligand should be located in the binding pocket.\n\
Supported formats are mol2, sdf or drf (DockResultFile, xml-based).\n\
* optionally a file in pdb-format containing water molecules.\n\
If you specify such a file , all water molecules appearing in the\n\
protein input-file (if any) will be ignored.\n\nOutput of this tool is a pdb-file containing the protein and all detected strongly bound water molecules.";
par.setToolManual(man);
par.setSupportedFormats("rec","pdb");
par.setSupportedFormats("wat","pdb");
par.setSupportedFormats("rl",MolFileFactory::getSupportedFormats());
par.setSupportedFormats(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME,"ini");
par.setSupportedFormats("o","pdb");
par.setSupportedFormats("write_ini","ini");
Options default_options;
ScoringFunction::getDefaultOptions(default_options);
par.registerAdvancedParameters(default_options);
par.setSupportedFormats(ScoringFunction::SUBCATEGORY_NAME, "filename","ini");
par.parse(argc, argv);
String default_inifile = par.get("write_ini");
if (default_inifile != CommandlineParser::NOT_FOUND)
{
// if ini-file already exists, read its entries first
list<Constraint*> clist;
if (ifstream(default_inifile.c_str()))
{
DockingAlgorithm::readOptionFile(default_inifile, default_options, clist);
}
Options* scoring_options = default_options.getSubcategory(ScoringFunction::SUBCATEGORY_NAME);
scoring_options->setDefault("scoring_type", "MM");
scoring_options->setDefault("nonbonded_cutoff_precalculation", scoring_options->get("nonbonded_cutoff"));
scoring_options->set("nonbonded_cutoff", 3.0);
DockingAlgorithm::writeOptionFile(par.get("write_ini"), default_options, clist);
Log << "Ini-file w/ default values has been written to file '"<<default_inifile<<"'. Goodbye!"<<endl;
return 0;
}
Log.setMinLevel(cout, 10);
GenericMolFile* ref_ligand_file = MolFileFactory::open(par.get("rl"));
Molecule* ref_ligand = ref_ligand_file->read();
ref_ligand_file->close();
delete ref_ligand_file;
Options option;
par.copyAdvancedParametersToOptions(option);
list<Constraint*> constraints;
if (par.get(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME) != CommandlineParser::NOT_FOUND)
{
DockingAlgorithm::readOptionFile(par.get(DockingAlgorithm::OPTION_FILE_PARAMETER_NAME), option, constraints, ref_ligand);
}
Options* option_category = option.getSubcategory(ScoringFunction::SUBCATEGORY_NAME);
if (!option_category) option_category = &option;
String scoring_type = option.setDefault("scoring_type", "MM");
// Support for using one and the same config-file for grid precalculation and docking
String precalc_nonbonded_cuttoff = option_category->get("nonbonded_cutoff_precalculation");
if (precalc_nonbonded_cuttoff != "")
{
option_category->set("nonbonded_cutoff", precalc_nonbonded_cuttoff);
}
if (scoring_type == "")
{
cout<<"[Error:] scoring_type must be specified in the config-file!"<<endl;
exit(1);
}
if (scoring_type != "GridedMM" && scoring_type != "GridedPLP" && scoring_type != "MM" && scoring_type != "PLP")
{
cout<<"[Error:] no valid scoring_type specified !"<<endl;
exit(1);
}
String par_file = option_category->get("filename");
if (par_file == "") par_file="Amber/amber96-docking.ini";
if (par_file == "" && !scoring_type.hasSubstring("GH"))
{
cout<<"[Error:] 'filename' for force-field parameter file must be specified in the config-file !"<<endl;
exit(1);
}
double DIRECT_REC_THRESHOLD = -5; // threshold for water directly bound to receptor
double BRIDGE_LIG_THRESHOLD = -1.5; // threshold for HOH--ligand interaction in case of water-bridges
double BRIDGE_REC_THRESHOLD = -2; // threshold for HOH--receptor interaction in case of water-bridges
StructurePreparer* sp;
//bool use_PLP = 0;
if (scoring_type.hasSubstring("PLP"))
{
//use_PLP = 1;
sp = new StructurePreparer("PLP");
}
else
{
//use_PLP = 0;
sp = new StructurePreparer;
}
sp->prepare(ref_ligand, par_file);
System receptor;
GenericMolFile* input = MolFileFactory::open(par.get("rec"));
if (!input)
{
cerr<<"Format of receptor-file not supported!"<<endl;
return 1;
}
*input >> receptor;
sp->prepare(&receptor, par_file);
delete input;
// stores those water molecules that interact very strongly with the receptor
set<Residue*> waters_strongly_recbound;
bool found_water = 0;
// Remove waters already in 'receptor'.
// Else we would end up with two water molecules at the same position.
for (ResidueIterator it = receptor.beginResidue(); +it; )
{
if (it->getName() == "HOH" || it->getName() == "WAT")
{
ResidueIterator tmp_it = it;
tmp_it++;
it->getChain()->remove(*it);
it = tmp_it;
}
else it++;
}
/// ab initio search for putative water positions
System water_system;
bool ab_initio_search = (par.get("ai")!=CommandlineParser::NOT_FOUND);
if (ab_initio_search)
{
ScoringFunction* scoring_function = 0;
if (scoring_type == "GridedMM" || scoring_type == "MM")
{
scoring_function = new MMScoring(receptor, *ref_ligand, option);
}
else if (scoring_type == "GridedPLP" || scoring_type == "PLP")
{
scoring_function = new PLPScoring(receptor, *ref_ligand, option);
}
findPutativeWaterPositions(scoring_function, water_system, BRIDGE_REC_THRESHOLD, sp, par_file);
delete scoring_function;
}
/// Read water molecules and append them to 'receptor'
if (!ab_initio_search)
{
String water_file = par.get("wat");
if (water_file == CommandlineParser::NOT_FOUND)
{
water_file = par.get("rec");
}
PDBFile water_pdb(water_file);
water_pdb >> water_system;
}
Chain* water_chain = new Chain("Waters");
Vector3 reflig_center = calculateMoleculeCenter(*ref_ligand);
for (ResidueConstIterator it = water_system.beginResidue(); +it; it++)
{
String name = it->getName().trim();
if (name.hasPrefix("HOH") || name.hasPrefix("WAT"))
{
if (calculateMinimalDistance(*ref_ligand, *it, 5) < 5)
{
Residue* residue_copy = new Residue(*it);
water_chain->insert(*residue_copy);
found_water = 1;
}
}
}
if (!found_water)
{
Log.level(20)<<"No water molecules found in input pdb-file, thus "<<endl;
String outfile = par.get("o");
if (outfile != CommandlineParser::NOT_FOUND) // write receptor with selected water molecules to output file
{
cout<<"writing unmodified protein to output file."<<endl;
PDBFile output(outfile, ios::out);
output << receptor;
}
else cout<<"doing nothing."<<endl;
exit(0);
}
// For safety, remove water hydrogens that already exist in input file.
// We will protonate the water molecules later, anyway.
for (AtomIterator it = water_chain->beginAtom(); +it; it++)
{
if (it->getElement().getSymbol() == "H")
{
it->select();
}
else it->deselect();
}
water_chain->removeSelected();
// add hydrogens to the new water molecules
FragmentDB fragDB("fragments/Fragments.db");
if (!ab_initio_search) water_chain->apply(fragDB.add_hydrogens);
receptor.getProtein(0)->append(*water_chain);
if (!ab_initio_search) sp->prepare(&receptor, par_file);
receptor.insert(*ref_ligand); // include ref-ligand for optimization of hydrogens !
cout<<"number of water molecules of be evaluated: "<<water_chain->countResidues()<<endl;
/// Quickly optimize the hydrogen positions
for (Size i = 0; i < 3; i++)
{
Size res_no = 1;
for (ResidueIterator it = water_chain->beginResidue(); it != water_chain->endResidue(); )
{
cout<<"\r"<<res_no<<flush;
res_no++;
ResidueIterator tmp_it = it;
tmp_it++;
optimizeWaterHydrogens(it, *water_chain, receptor, option);
it = tmp_it;
}
cout<<endl;
}
receptor.remove(*ref_ligand);
/// Evaluate binding of water molecules to receptor *or* other water molecules
for (ResidueIterator it = water_chain->beginResidue(); it != water_chain->endResidue(); )
{
ResidueIterator tmp_it = it;
tmp_it++;
double score = calculateWaterBinding(it, *water_chain, receptor, option);
// remove those water molecules that are not bound to the receptor
if (score > BRIDGE_REC_THRESHOLD)
{
water_chain->remove(*it);
cout<<"removed water not bound to receptor, score="<<score<<endl;
}
if (score < DIRECT_REC_THRESHOLD)
{
cout<<"found water strongly bound to receptor or other water molecules: "<<it->getName()<<it->getID()<<", "<<score<<" kJ/mol"<<endl;
waters_strongly_recbound.insert(&*it);
}
it = tmp_it;
}
/// Remove waters that are part of water networks that are not connected to the receptor
removeUnboundWaterNetworks(water_chain, receptor, option, BRIDGE_REC_THRESHOLD);
/// Now evaluate binding of water molecules to the *ref-ligand*
ScoringFunction* scoring_function = 0;
if (scoring_type == "GridedMM" || scoring_type == "MM")
{
scoring_function = new MMScoring(receptor, *ref_ligand, option);
}
else if (scoring_type == "GridedPLP" || scoring_type == "PLP")
{
scoring_function = new PLPScoring(receptor, *ref_ligand, option);
}
scoring_function->enableStoreInteractions();
scoring_function->setLigand(*ref_ligand);
scoring_function->update();
scoring_function->updateScore();
scoring_function->printResult(1);
set<Residue*> selected_waters;
list<String> interaction_types;
interaction_types.push_back("ES");
interaction_types.push_back("HB");
interaction_types.push_back("vdW");
bool first = 1;
for (ResidueIterator it = receptor.beginResidue(); +it; it++)
{
String name = it->getName().trim();
if (!name.hasPrefix("HOH") && !name.hasPrefix("WAT"))
{
continue;
}
double score_sum = 0;
for (AtomConstIterator it2 = it->beginAtom(); +it2; it2++)
{
if (it2->interactions)
{
score_sum += it2->interactions->getInteractionEnergy();
}
}
if (fabs(score_sum) > 1.5 || waters_strongly_recbound.find(&*it) != waters_strongly_recbound.end())
{
if (first)
{
cout<<"Interactions between reference-ligand and water molecules: ---- "<<endl;
first = 0;
}
cout<<it->getName()<<" "<<it->getID()<<" : "<<score_sum<<" kJ/mol"<<endl;
}
// Remove water molecules that clash with the reference ligand and
// keep those waters that interact significantly with the reference ligand and the receptor
// OR that interact very strongly only with the receptor
if (score_sum > 5 || (score_sum > BRIDGE_LIG_THRESHOLD && waters_strongly_recbound.find(&*it) == waters_strongly_recbound.end()))
{
it->select(); // mark for removal
}
}
/// Write output and clean everthing up
String outfile = par.get("o");
if (outfile != CommandlineParser::NOT_FOUND) // write receptor with selected water molecules to output file
{
receptor.removeSelected();
PDBFile output(outfile, ios::out);
output << receptor;
}
//delete scoring_function;
delete sp;
delete ref_ligand;
return 0;
}
|