File: DSN6File.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (335 lines) | stat: -rw-r--r-- 8,599 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/FORMAT/DSN6File.h>

namespace BALL
{

	DSN6File::DSN6File()
		: File(),
		swap_bytes_(false),
		cell_scaling_(1.0),
		prod_(1.0),
		plus_(0.0)
	{
	}

	DSN6File::DSN6File(const String& name, File::OpenMode open_mode)
		: File(name, open_mode),
		swap_bytes_(false),
		cell_scaling_(1.0),
		prod_(1.0),
		plus_(0.0)
	{
		// DSN6Files are always binary
		if ((open_mode & std::ios::binary) == 0)
		{
			open_mode_ = (open_mode | std::ios::binary); 
			reopen();
		}
	}

	DSN6File::~DSN6File()
	{
		close();
		clear();
	}

	void DSN6File::clear()
	{
		File::clear();
		swap_bytes_ = false;
	}


	bool DSN6File::operator == (const DSN6File& file) const
	{
		return (   (File::operator == (file))
						 &&(swap_bytes_    == file.swap_bytes_));
	}

	bool DSN6File::isSwappingBytes() const
	{
		return swap_bytes_;
	}


	bool DSN6File::open(const String& name, File::OpenMode open_mode)
	{
		if (!(open_mode |= std::ios::binary))
		{
			open_mode = open_mode | std::ios::binary;
		}

		if (!File::open(name, open_mode))
		{
			return(false);
		}

		return true;
	}

	bool DSN6File::readHeader()
	{
		// first read the complete 512 bytes of header information
		char header[512];
		std::fstream::read(header, 512);

		if (gcount() != 512)
		{
			Log.error() << "DSN6File::readHeader(): File does not contain a proper DSN6 header. Aborting read." << std::endl;

			return false;
		}

		// to determine whether we have to swap bytes in the header (depending on the version of
		// the DSN6 - File and on the byte order on the machine) we try to reproduce the known value
		// of 100 in header[2*18]
		short int header_value = readHeaderValue_(header, 18);
		
		if (header_value != 100)
		{
			// try to change endianness
			swap_bytes_ = true;

			header_value = readHeaderValue_(header, 18);
			if (header_value != 100)
			{
				Log.error() << "DSN6File::readHeader(): Corrupt DSN6 header: header[16] != 100. Aborting read." << std::endl;
				
				return false;
			}
		}

		header_value = readHeaderValue_(header, 0);
		start_.x = (float)header_value;

		header_value = readHeaderValue_(header, 1);
		start_.y = (float)header_value;

		header_value = readHeaderValue_(header, 2);
		start_.z = (float)header_value;

		header_value = readHeaderValue_(header, 3);
		extent_.x = (float)header_value;

		header_value = readHeaderValue_(header, 4);
		extent_.y = (float)header_value;

		header_value = readHeaderValue_(header, 5);
		extent_.z = (float)header_value;

		header_value = readHeaderValue_(header, 6);
		sampling_rate_.x = (float)header_value;

		header_value = readHeaderValue_(header, 7);
		sampling_rate_.y = (float)header_value;

		header_value = readHeaderValue_(header, 8);
		sampling_rate_.z = (float)header_value;

		header_value = readHeaderValue_(header, 17);	
		cell_scaling_ = (float)header_value;

		header_value = readHeaderValue_(header, 9);
		crystal_dimension_.x = (float)header_value / cell_scaling_;  

		header_value = readHeaderValue_(header, 10);
		crystal_dimension_.y = (float)header_value / cell_scaling_;

		header_value = readHeaderValue_(header, 11);
		crystal_dimension_.z = (float)header_value / cell_scaling_;

		header_value = readHeaderValue_(header, 12);
		alpha_ = Angle((float)header_value / cell_scaling_, false);

		header_value = readHeaderValue_(header, 13);
		beta_  = Angle((float)header_value / cell_scaling_, false);

		header_value = readHeaderValue_(header, 14);
		gamma_ = Angle((float)header_value / cell_scaling_, false);

		header_value = readHeaderValue_(header, 15);
		prod_ = (float)header_value / 100.;

		header_value = readHeaderValue_(header, 16);
		plus_ = (float)header_value;

		// convert from grid space to cartesian coordinates (inspired by the VMD code :-) )
		Vector3 scaled_axes(crystal_dimension_.x/sampling_rate_.x,
												crystal_dimension_.y/sampling_rate_.y,
											 	crystal_dimension_.z/sampling_rate_.z);
		
		Vector3 x_tmp(scaled_axes.x, 0., 0.);
		Vector3 y_tmp(cos(gamma_.toRadian()), sin(gamma_.toRadian()), 0.);
		y_tmp *= scaled_axes.y;
		Vector3 z_tmp( cos(beta_.toRadian()), 
									(cos(alpha_.toRadian()) - cos(beta_.toRadian())*cos(gamma_.toRadian())) / sin(gamma_.toRadian()),
									0.);
		z_tmp.z = sqrt(1.0 - z_tmp.x*z_tmp.x - z_tmp.y*z_tmp.y);
		z_tmp *= scaled_axes.z;

		origin_.x = x_tmp.x * start_.x + y_tmp.x * start_.y + z_tmp.x * start_.z;
		origin_.y = y_tmp.y * start_.y + z_tmp.y * start_.z;
		origin_.z = z_tmp.z * start_.z;

		xaxis_.x = x_tmp.x * (extent_.x - 1);
		xaxis_.y = 0.;
		xaxis_.z = 0.;

		yaxis_.x = y_tmp.x * (extent_.y - 1);
		yaxis_.y = y_tmp.y * (extent_.y - 1);
		yaxis_.z = 0.;

		zaxis_.x = z_tmp.x * (extent_.z - 1);
		zaxis_.y = z_tmp.y * (extent_.z - 1);
		zaxis_.z = z_tmp.z * (extent_.z - 1);

		// that's it. we're done
		return true;
	}

	short int DSN6File::readHeaderValue_(char* header, Position pos)
	{
		short int val = *((short int*)(header + 2*pos));

		if (swap_bytes_)
			swapBytes(val);

		return val;
	}
			
	bool DSN6File::writeHeader()
	{
		// construct a correct header array and write it.
//		char header[512];

		// TODO: implement
		return false;
	}

	bool DSN6File::read(RegularData3D& density_map)
	{

		// first read the header
		if (!readHeader())
		{
			Log.error() << "DSN6File::read(): readHeader() failed. Aborting read." << std::endl;
			return false;
		}

		// and then the individual bricks. each brick contains 8^3 grid points, stored as bytes
		// which are converted to floats using the formula 
		// density = (byte_value - plus) / prod
		float factor = 1./prod_;

		// how many bricks do we have?
		Size number_of_bricks_x = (Size) ceil(extent_.x / 8.0);
		Size number_of_bricks_y = (Size) ceil(extent_.y / 8.0);
		Size number_of_bricks_z = (Size) ceil(extent_.z / 8.0);
		
		Size global_index = 0;
		Size brick_index = 0;
		char brick[512];
		unsigned char* brick_pointer;

		RegularData3D::IndexType size;
		size.x = (Size) extent_.x;
		size.y = (Size) extent_.y;
		size.z = (Size) extent_.z;
		
		density_map = RegularData3D(origin_, xaxis_, yaxis_, zaxis_, size);

		// NOTE: this currently only works for orthogonal maps!!!
		// TODO: implement a simple volumetric data type. all we need to do currently
		//       is to set a matrix converting between the given coordinate system of
		//       the volumetric data set and 3D space
		density_map.setDimension(Vector3(xaxis_.x, yaxis_.y, zaxis_.z));

		Size brick_x, brick_y, brick_z;
		// the ordering in both the individual bricks and the whole filw
		// is (fastest to slowest) x - y - z
		for (brick_z = 0; brick_z < number_of_bricks_z; brick_z++)
		{
			for (brick_y = 0; brick_y < number_of_bricks_y; brick_y++)
			{
				for (brick_x = 0; brick_x < number_of_bricks_x; brick_x++)
				{
					brick_index = 0;
					// read the next brick
					std::fstream::read(brick, 512);
					brick_pointer = (unsigned char*)brick;

					if (gcount() != 512)
					{
						Log.error() << "DSN6File::read(): Could not read next brick. Aborting read." << std::endl;
						return false;
					}

					// and swap its bytes
					convertBrick_(brick);

					// code is inspired by the VMD code :-)
					Size x, y, z;
					for (z=0; z<8; z++) // iterate over z of the current brick
					{
						if ((z + brick_z*8) >= extent_.z)
						{
							global_index += (Size)((8-z)*extent_.x*extent_.y);
							break;
						}	
					
						for (y=0; y<8; y++)
						{
							if ((y + brick_y*8) >= extent_.y)
							{
								global_index += (Size)((8-y)*extent_.x);
								brick_index  += (Size)((8-y)*8);
								break;
							}
							
							for (x=0; x<8; x++)
							{
								if ((x + brick_x*8) >= extent_.x)
								{
									global_index += (Size)(8 - x);
									brick_index  += (Size)(8 - x);
									break;
								}
	
								float brick_value = (float)(*(brick_pointer+brick_index));
								density_map[global_index] = factor * (brick_value - plus_);

								brick_index++;
								global_index++;
							} // for x...

							global_index += (Size)(extent_.x - 8);
						} // for y...

						global_index += (Size)(extent_.x*extent_.y - 8*extent_.x);
					} // for z...

					global_index += (Size)(8 - 8*extent_.x*extent_.y);
				} // for brick_x

				global_index += (Size)(8 * (extent_.x - number_of_bricks_x));
			}	// for brick_y	

			global_index += (Size)(8 * (extent_.x*extent_.y - extent_.x*brick_y));
		}	 // for brick_z

		// done.
		return true;
	}

	void DSN6File::convertBrick_(char* brick)
	{
		for (Size i=0; i<512; i+=2)
		{
			std::swap(brick[i], brick[i+1]);
    }
	}
} // namespace BALL