File: support.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (721 lines) | stat: -rw-r--r-- 20,647 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/MOLMEC/COMMON/support.h>
#include <BALL/MATHS/common.h>
#include <BALL/KERNEL/atom.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/KERNEL/system.h>
#include <BALL/KERNEL/atomIterator.h>
#include <BALL/SYSTEM/sysinfo.h>

#include <cmath>
#include <limits>

//   #define BALL_BENCHMARK

#ifdef BALL_BENCHMARK
 #include <BALL/SYSTEM/timer.h>
#endif 


using namespace std;

namespace BALL 
{
	namespace MolmecSupport 
	{

		// Calculate a vector of non-bonded atom pairs whose distance is
		// smaller than the value of the distance variable
		Size calculateNonBondedAtomPairs
			(vector< pair <Atom*, Atom*> >& pair_vector, 
			 const AtomVector& atom_vector,
			 const SimpleBox3& box, 
			 double distance,
			 bool periodic_boundary_enabled, 
			 PairListAlgorithmType type)
		{
#ifdef BALL_BENCHMARK
	Timer t;
	t.start();
#endif

			// determine lower and upper corner of the hash grid that contains
			// the box plus "distance" many units on each side
			Vector3 lower(std::numeric_limits<float>::max());
			Vector3 upper(std::numeric_limits<float>::min());

			// Iterators for the atom vector
			AtomVector::ConstIterator atom_it;

			// Position vectors
			Vector3 position;
			Vector3 new_position; 
			Vector3 difference;

			// Are there atoms stored in atom_vector at all?
			if (atom_vector.size() == 0)
			{
				Log.warn() << "calculateNonBondedAtomPairs: atom_vector is empty " << endl;
				return 0;
			}

			// the box length along each axis
			double period_x = 0.0;
			double period_y = 0.0;
			double period_z = 0.0;
			Vector3 period;

			// Test whether the periodic boundary is enabled or not and calculate
			// the box size accordingly
			if (periodic_boundary_enabled) 
			{
				// the box width / length / depth
				period = Vector3(box.getWidth(), box.getHeight(), box.getDepth());
				period_x = period.x;
				period_y = period.y;
				period_z = period.z;

				// ... and add at least distance to each coordinate to gain a box
				// that contains enough neighbouring boxes.
				if (distance < period_x) 
				{
					lower.x = box.a.x - distance;
					upper.x = box.b.x + distance;
				} 
				else 
				{
					lower.x = box.a.x - period_x;
					upper.x = box.b.x + period_x;
				}	

				if (distance < period_y) 
				{
					lower.y = box.a.y - distance;
					upper.y = box.b.y + distance;
				} 
				else 
				{
					lower.y = box.a.y - period_y;
					upper.y = box.b.y + period_y;
				}	

				if (distance < period_z) 
				{
					lower.z = box.a.z - distance;
					upper.z = box.b.z + distance;
				} 
				else 
				{
					lower.z = box.a.z - period_z;
					upper.z = box.b.z + period_z;
				}	
			} 
			else  
			{
				// we know nothing about the box, so we have to calculate it on our
				// own by looking at the position of every atom in atom_vector
				for (atom_it = atom_vector.begin(); atom_it != atom_vector.end();
						++atom_it)	
				{
					position = (*atom_it)->getPosition();
					if (position.x < lower.x) lower.x = position.x;
					if (position.y < lower.y) lower.y = position.y;
					if (position.z < lower.z) lower.z = position.z;
					if (position.x > upper.x) upper.x = position.x;
					if (position.y > upper.y) upper.y = position.y;
					if (position.z > upper.z) upper.z = position.z;
				}

				lower.x -= distance;
				lower.y -= distance;
				lower.z -= distance;
				upper.x += distance;
				upper.y += distance;
				upper.z += distance;
			}

			// now we have the box, let's look which pairs we shall create

			// Remember the initial number of atom pairs in the pair vector.
			Size number_of_pairs = pair_vector.size();

			// Squared distance
			double squared_distance = distance * distance;

			if (periodic_boundary_enabled) 
			{
				// We always use the brute-force algorithm if PBC are enabled.
				// Brute force algorithm: for every atom, calculate the 
				// image of every other atom and check whether this atom
				// is within the cutoff radius.
				Vector3 position_i;
				double inverse_period_x = 1.0 / period_x;
				double inverse_period_y = 1.0 / period_y;
				double inverse_period_z = 1.0 / period_z;
				for (Position i = 0; i < atom_vector.size() - 1; i++)
				{
					position_i = atom_vector[i]->getPosition();
					for (Position j = i + 1; j < atom_vector.size(); j++) 
					{
						difference = position_i - atom_vector[j]->getPosition();
						difference.x = difference.x - period_x * Maths::rint(difference.x * inverse_period_x);
						difference.y = difference.y - period_y * Maths::rint(difference.y * inverse_period_y);
						difference.z = difference.z - period_z * Maths::rint(difference.z * inverse_period_z);

						// Remove 1-2 and 1-3 pairs!
						if ((difference.getSquareLength() < squared_distance) 
								&& !atom_vector[i]->isBoundTo(*atom_vector[j])
								&& !atom_vector[i]->isGeminal(*atom_vector[j]))
						{
							pair_vector.push_back(pair<Atom*, Atom*>(atom_vector[i], atom_vector[j]));
						}
					}
				}	
			} 
			// periodic boundary not enabled
			else 
			{
				// Check what kind of algorithm should be used for calculating the
				// neighbours
				if (type != BRUTE_FORCE)
				{
					float memory = SysInfo::getAvailableMemory();
					if (memory != -1)
					{
						memory *= 0.7;
						float min_spacing = HashGrid3<const Atom*>::calculateMinSpacing((LongSize)memory, upper - lower + Vector3(0.2F));
						if (min_spacing > distance) type = BRUTE_FORCE;
					}
				}

       	if (type == BRUTE_FORCE)
				{
					// Brute force algorithm
					for (Position i = 0; i < (atom_vector.size() - 1); ++i) 
					{
						position = atom_vector[i]->getPosition();
						for (Position j = i + 1; j < atom_vector.size(); j++) 
						{
							// Remove 1-2 and 1-3 pairs!
							if (((position.getSquareDistance(atom_vector[j]->getPosition())) < squared_distance) 
									&& !atom_vector[i]->isBoundTo(*atom_vector[j])
									&& !atom_vector[i]->isGeminal(*atom_vector[j]))
							{
								pair_vector.push_back(pair<Atom*,Atom*>(atom_vector[i], atom_vector[j]));
							}
						}
					}	
				} 
				else 
				{  	
					// Algorithm using a 3D hash grid
					//
					// Use a hash grid with box length "distance" to determine all
					// neighboring atom pairs
					
					// we enlarge the box by some constant to be sure not to run into
					// numerical problems
 					HashGrid3<Atom*> grid(lower - Vector3(0.1F), upper - lower + Vector3(0.2F), 
																distance + 0.1F);

					for (atom_it = atom_vector.begin(); atom_it != atom_vector.end(); ++atom_it) 
					{
						grid.insert((*atom_it)->getPosition(), *atom_it); // insert atom into grid
					}

					// iterate over all boxes
					HashGrid3<Atom*>::BoxIterator box_it = grid.beginBox();
					for (; box_it != grid.endBox(); ++box_it) 
					{
						Position x, y, z;
						grid.getIndices(*box_it, x, y, z);

						// look in the same box for near atoms
						HashGridBox3<Atom*>::ConstDataIterator bit = box_it->beginData(); 
						for (; +bit; bit++)
						{
							const Vector3& bit_pos = (*bit)->getPosition();
							// iterate over all atoms after bit
 							HashGridBox3<Atom*>::ConstDataIterator tit = bit; 
 							tit++;
							for (; +tit; tit++)
							{
								// Remove 1-2 and 1-3 pairs!
								if (bit_pos.getSquareDistance((*tit)->getPosition()) < squared_distance 
										&& !(*tit)->isBoundTo(**bit)
										&& !(*tit)->isGeminal(**bit))
								{
									pair_vector.push_back(pair<Atom*,Atom*>(*bit, *tit));
								}
							}
						}

						// iterator over neighbour boxes
						for (Index xi = -1; xi <= 1; xi++)
						{
							const Position nx = x + xi;
							for (Index yi = -1; yi <= 1; yi++)
							{
								const Position ny = y + yi;
								for (Index zi = -1; zi <= 1; zi++)
								{
 									if ((xi == 0) && (yi == 0) && (zi == 0)) continue;

									HashGridBox3<Atom*>* bbox = grid.getBox(nx, ny, z+zi);
									// smaller operator also checks for 0 !
									if (bbox < &*box_it || bbox->isEmpty()) 
									{
										continue;
									}

									// iterate over all atoms of current box
									HashGridBox3<Atom*>::ConstDataIterator tit = box_it->beginData();
									for (;+tit; tit++)
									{
										const Vector3& atom_pos = (*tit)->getPosition();
										// iterate over all atoms of neighbour boxes
										HashGridBox3<Atom*>::ConstDataIterator bit = bbox->beginData(); 
										for (; +bit; bit++)
										{
											// Remove 1-2 and 1-3 pairs!
											if (((*bit)->getPosition().getSquareDistance(atom_pos) < squared_distance) 
													&& !(*tit)->isBoundTo(**bit)
													&& !(*tit)->isGeminal(**bit))
											{
												pair_vector.push_back(pair<Atom*,Atom*>(*bit, *tit));
											}
										}
									}
									
								} // zi
							} // yi
						}  // xi
					} // for all boxes
				}
			}
#ifdef BALL_BENCHMARK
t.stop();
Log.error() << "calculateNonBondedAtomPairs time: " << String(t.getClockTime()) << std::endl;
#endif
			// Return the number of pairs *added* to the vector.
			return (pair_vector.size() - number_of_pairs);
		}


		Size sortNonBondedAtomPairsAfterSelection
			(vector< pair <Atom*, Atom*> >& pair_vector)
		{
			Size number_of_pairs_with_selection = 0;

			if (!pair_vector.empty())
			{
				// sort the list such that those pairs where one of the atoms
				// is selected appear at the beginning of the list and the 
				// remaining atoms at the end
				ForceField::PairVector::iterator current_it = pair_vector.begin();
				ForceField::PairVector::iterator last_it = pair_vector.end();
				last_it--;
				while (!(current_it == last_it))
				{
					if (current_it->first->isSelected() || current_it->second->isSelected())
					{
						// increment the current_it iterator and the pair counter
						current_it++;
						number_of_pairs_with_selection++;
					}
					else
					{
						// this one was not selected, put it at the end of the list,
						// increment the last_it iterator
						swap(*current_it, *last_it);
						last_it--;
					}
				}
				if (last_it->first->isSelected() || last_it->second->isSelected())
				{
					number_of_pairs_with_selection++;
				}
			}

			// return the number of pairs where any atom is selected
			// these pairs appear at the beginning of the list

			return number_of_pairs_with_selection;
		}


		// Add solvent molecules from "solvent" to "system" if they lie 
		// in the box "box" and if they do not overlap with molecules in 
		// "solute_grid"
		Size addNonOverlappingMolecules
			(System& system, const HashGrid3<const Atom*>& solute_grid, 
			 const System& solvent, const SimpleBox3& box, double distance)
		{
			const Molecule* old_molecule = 0;
			const Molecule* new_molecule = 0;
			bool add = true;
			bool keep = true;
			Size atom_counter = 0;
			Size mol_counter = 0;
			double square_distance = distance * distance;
			double mass = 0;
			Vector3	center_of_gravity(0.0);
			Vector3 period(box.getWidth(), box.getHeight(), box.getDepth());

			// Iterate over all atoms in solvent and test the different molecules
			// as follows: 
			// Calculate the number of atoms of the molecule and its mass. If the
			// number of molecules is larger 0 and the mass is larger 0, then a
			// another test has to be carried out whether the center of gravity
			// is in the box. If so, the molecule will be inserted in solute:

			// This is not the most obviuos way to iterate over different
			// molecules. We iterate over all solvent _atoms_ and distinguish
			// _molecules_ by their dedicated molecule (by examining getMolecule())

			// variables needed within the loop
			Vector3 position;
			Vector3 new_position;
			float atomic_mass;
			HashGridBox3<const Atom*>::ConstDataIterator data_it;
			HashGridBox3<const Atom*>::ConstBoxIterator box_it;
			Vector3	additional_space(distance * 1.02);
			HashGrid3<const Atom*> solvent_grid(box.a - additional_space,
					box.b - box.a + additional_space + additional_space, distance);

			// determine the maximum indices of gridboxes
			Position max_x, max_y, max_z;
			max_x = solute_grid.getSizeX();
			max_y = solute_grid.getSizeY();
			max_z = solute_grid.getSizeZ();
			Position index_x, index_y, index_z;

			AtomConstIterator atom_it = solvent.beginAtom();
			if (+atom_it)
			{
				old_molecule = atom_it->getMolecule();
				for (; +atom_it; ++atom_it) 
				{
					// Test if a new molecule is reached and if the old can be inserted
					// into the solute system
					new_molecule = atom_it->getMolecule();
					if (new_molecule != old_molecule) 
					{
						if (add)
						{
							if ((atom_counter > 0) && (mass != 0)) 
							{
								center_of_gravity /= mass;
								if ((center_of_gravity.x >= box.a.x) 
										&& (center_of_gravity.x <= box.b.x)
										&& (center_of_gravity.y >= box.a.y) 
										&& (center_of_gravity.y <= box.b.y) 
										&& (center_of_gravity.z >= box.a.z) 
										&& (center_of_gravity.z <= box.b.z)) 
								{
									// copy the solvent molecule and insert it into
									// the solute system 
									Molecule* solvent_molecule = new Molecule(*old_molecule);
									system.insert(*solvent_molecule);
									solvent_grid.insert(atom_it->getPosition(), &*atom_it);
									mol_counter++;
								}
							}
						}

						old_molecule = new_molecule;
						add = true;
						center_of_gravity.x = 0;
						center_of_gravity.y = 0;
						center_of_gravity.z = 0;
						atom_counter = 0;
						mass = 0;
					}


					position = atom_it->getPosition();

					atomic_mass = atom_it->getElement().getAtomicWeight();
					center_of_gravity += atomic_mass * position;
					mass += atomic_mass; 
					atom_counter++;

					// check for all collisions with any of the solute's atoms
					const HashGridBox3<const Atom*>* hbox = solute_grid.getBox(position);
					if ((hbox != 0) && add)
					{	
						for (box_it = hbox->beginBox(); +box_it && add; ++box_it)
						{
							for (data_it = box_it->beginData(); +data_it && add; ++data_it)
							{
								if ((position.getSquareDistance((*data_it)->getPosition())) 
										< square_distance)
								{
									add = false;
								}
							}
						}

					}
				}	

				if (add)
				{
					if ((atom_counter > 0) && (mass != 0)) 
					{
						center_of_gravity /= mass;
						if ((center_of_gravity.x >= box.a.x) 
								&& (center_of_gravity.x <= box.b.x)
								&& (center_of_gravity.y >= box.a.y) 
								&& (center_of_gravity.y <= box.b.y) 
								&& (center_of_gravity.z >= box.a.z) 
								&& (center_of_gravity.z <= box.b.z)) 
						{
							// copy the solvent molecule and insert it into
							// the solute system 
							Molecule* solvent_molecule = new Molecule(*old_molecule);
							system.insert(*solvent_molecule);
							mol_counter++;
						}
					}
				}
			}

			// now we have to check for collisions at the periodic boundary

#ifndef CHECK
			MoleculeIterator mol_it = system.beginMolecule();
			HashSet<Molecule*> delete_set;

			for (; +mol_it; ++mol_it)
			{
				keep = true;
				for (atom_it = mol_it->beginAtom(); +atom_it; ++atom_it)
				{
					// we have to check for boundary conditions so test whether we
					// are at a boundary

					position = atom_it->getPosition();
					const HashGridBox3<const Atom*>* hbox = solvent_grid.getBox(position);
					solvent_grid.getIndices(*hbox, index_x, index_y, index_z);

					// indices below 1 and above max - 1 are at the border, because
					// the grid has an additonal layer of boxes wrapped around for
					// making the algorithm more robust in numerical terms

					// if we are at the border, translate the atom virtually by
					// period (or -period, respectively) and then calculate the
					// distance to every atom in all neighbouring boxes.

					new_position = position;
					if (index_x <= 1)
					{
						new_position.x += period.x;
					}
					if (index_x >= max_x - 1)
					{
						new_position.x -= period.x;
					}

					if (new_position != position)
					{
						hbox = solvent_grid.getBox(new_position);
						if ((hbox != 0))
						{	
							for (box_it = hbox->beginBox(); +box_it && keep; ++box_it)
							{
								for (data_it = box_it->beginData(); +data_it && keep; ++data_it)
								{
									if ((new_position.getSquareDistance((*data_it)->getPosition())) 
											< square_distance)
									{
										keep = false;
									}
								}
							}
						}
					}

					new_position = position;
					if (index_y <= 1)
					{
						new_position.y += period.y;
					}
					if (index_y >= max_y - 1)
					{
						new_position.y -= period.y;
					}

					if (new_position != position)
					{
						hbox = solvent_grid.getBox(new_position);
						if ((hbox != 0))
						{	
							for (box_it = hbox->beginBox(); +box_it && keep; ++box_it)
							{
								for (data_it = box_it->beginData(); +data_it && keep; ++data_it)
								{
									if ((new_position.getSquareDistance((*data_it)->getPosition())) 
											< square_distance)
									{
										keep = false;
									}
								}
							}
						}
					}

					new_position = position;
					if (index_z <= 1)
					{
						new_position.z += period.z;
					}
					if (index_z >= max_z - 1)
					{
						new_position.z -= period.z;
					}

					if (new_position != position)
					{
						hbox = solvent_grid.getBox(new_position);
						if ((hbox != 0))
						{	
							for (box_it = hbox->beginBox(); +box_it && keep; ++box_it)
							{
								for (data_it = box_it->beginData(); +data_it && keep; ++data_it)
								{
									if ((new_position.getSquareDistance((*data_it)->getPosition())) 
											< square_distance)
									{
										keep = false;
									}
								}
							}
						}
					}

				}
				if (!keep)
				{
					delete_set.insert(&*mol_it);
				}
			}

			// update the number of atoms we return to tha caller
			mol_counter -= delete_set.size();

			// delete all molecules we gathered
			HashSet<Molecule*>::Iterator del_it = delete_set.begin();
			for(; del_it.operator + (); ++del_it)
			{
				delete *del_it;
			}
#endif

			// return the number of processed solvent molecules
			return mol_counter;
		}


		// This little function adapts a waterbox from external programs that
		// use a different definition of the periodic box.
		void adaptWaterBox(System& system, const SimpleBox3& box)
		{

			float width = box.getWidth();
			float height = box.getHeight();
			float depth = box.getDepth();

			Vector3	center_of_gravity(0.0);
			float atomic_mass;
			Size atom_counter;
			float total_mass;
			Vector3 translation;

			// iterate over every molecule of the system and translate every
			// molecule with center of gravity outside to the opposite wall of
			// the box.
			Size mol_count = 0;
			MoleculeIterator mol_it = system.beginMolecule();
			AtomIterator atom_it;
			for (; +mol_it; ++mol_it)
			{
				atom_counter = 0;
				center_of_gravity.clear();
				total_mass = 0.0;

				// iterate over all atoms of this molecule to calculate the center
				// of gravity of this molecule
				atom_it = mol_it->beginAtom();
				for (; +atom_it; ++atom_it)
				{
					atom_counter++;
					atomic_mass = atom_it->getElement().getAtomicWeight();
					center_of_gravity += atomic_mass * atom_it->getPosition();
					total_mass += atomic_mass;
				}

				center_of_gravity /= total_mass;

				bool translate = false;

				if (center_of_gravity.x < box.a.x) 
				{
					translation.x += width;
					translate = true;
				} 
				else if (center_of_gravity.x > box.b.x) 
				{
					translation.x -= width;
					translate = true;
				}

				if (center_of_gravity.y < box.a.y) 
				{
					translation.y += height;
					translate = true;
				} 
				else if (center_of_gravity.y > box.b.y) 
				{
					translation.y -= height;
					translate = true;
				}

				if (center_of_gravity.z < box.a.z) 
				{
					translation.z += depth;
					translate = true;
				} 
				else if (center_of_gravity.z > box.b.z) 
				{
					translation.z -= depth;
					translate = true;
				}

				// Translate the atoms of the molecule if it has to be translated
				if (translate) 
				{
					for (atom_it = mol_it->beginAtom(); +atom_it; ++atom_it)
					{
						atom_it->setPosition(atom_it->getPosition() + translation);
					}
				}
				mol_count++;
			} // iteration over molecules
		}


		void calculateMinimumImage
			(Vector3& distance,	const Vector3& period)
		{
			distance.x = distance.x - period.x * Maths::rint(distance.x / period.x);
			distance.y = distance.y - period.y * Maths::rint(distance.y / period.y);
			distance.z = distance.z - period.z * Maths::rint(distance.z / period.z);
		}

	}	// namespace MolmecSupport

} // namespace BALL