File: molecularDynamics.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (625 lines) | stat: -rw-r--r-- 19,699 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: molecularDynamics.C,v 1.22 2005/03/01 10:07:54 oliver Exp $
//

#include <BALL/MOLMEC/MDSIMULATION/molecularDynamics.h>
#include <BALL/MOLMEC/COMMON/forceField.h>
#include <BALL/MOLMEC/COMMON/snapShotManager.h>
#include <BALL/KERNEL/PTE.h>

namespace BALL
{
	// Definition of default values and options
	const char* MolecularDynamics::Option::MAXIMAL_NUMBER_OF_ITERATIONS = "maximal_number_of_iterations";
  const char* MolecularDynamics::Option::MAXIMAL_SIMULATION_TIME = "maximal_simulation_time";
	const char* MolecularDynamics::Option::NUMBER_OF_ITERATION = "number_of_iteration";
	const char* MolecularDynamics::Option::ENERGY_OUTPUT_FREQUENCY = "energy_output_frequency";
	const char* MolecularDynamics::Option::SNAPSHOT_FREQUENCY = "snapshot_frequency";
	const char* MolecularDynamics::Option::TIME_STEP = "time_step";
	const char* MolecularDynamics::Option::REFERENCE_TEMPERATURE = "reference_temperature";
	const char* MolecularDynamics::Option::BATH_RELAXATION_TIME = "bath_relaxation_time";
	const char* MolecularDynamics::Option::CURRENT_TIME = "current_time";


	const Size MolecularDynamics::Default::MAXIMAL_NUMBER_OF_ITERATIONS = 10000;
  const double MolecularDynamics::Default::MAXIMAL_SIMULATION_TIME = 1;  // product of maxNoIterations and time step 
	const Size MolecularDynamics::Default::NUMBER_OF_ITERATION = 0;        // index of start iteration 
	const Size MolecularDynamics::Default::ENERGY_OUTPUT_FREQUENCY = 500;
	const Size MolecularDynamics::Default::SNAPSHOT_FREQUENCY = 500;
	const double MolecularDynamics::Default::TIME_STEP = 0.0001;
	const double MolecularDynamics::Default::REFERENCE_TEMPERATURE = 300.0;
	const double MolecularDynamics::Default::BATH_RELAXATION_TIME = 0.2;
	const double MolecularDynamics::Default::CURRENT_TIME = 0.0;          // start time 




	// The default constructor with no arguments
  MolecularDynamics::MolecularDynamics()
		:	valid_(false),
			force_field_ptr_(0),
			system_ptr_(0),
			atom_vector_(),
			time_step_(0.0),
			reference_temperature_(0.0),
			current_temperature_(0.0),			
			kinetic_energy_(0.0),
			total_energy_(0.0),
			current_time_(0.0),
			energy_output_frequency_(0),
			snapshot_frequency_(0),
			snapshot_manager_ptr_(0),
			abort_by_energy_enabled_(true),
			abort_energy_(1.e12)
	{
		// As no force field has been named, there is not much to do. 
		// Just indicate that the MD simulation is not ready yet. 
	}

	// Constructor expecting a force field 
	MolecularDynamics::MolecularDynamics(ForceField& force_field)
		:	system_ptr_(0),
			atom_vector_(),
			time_step_(0.0),
			reference_temperature_(0.0),
			current_temperature_(0.0),			
			kinetic_energy_(0.0),
			total_energy_(0.0),
			current_time_(0.0),
			energy_output_frequency_(0),
			snapshot_frequency_(0),
			snapshot_manager_ptr_(0),
			abort_by_energy_enabled_(true),
			abort_energy_(1.e12)
	{
		valid_ = true;
		force_field_ptr_ = &force_field;

		if (!valid_)
		{
			// The setup has failed for some reason. Output an error message.
			Log.error() << "Setup of instance of class 'MolecularDynamics' has failed." << std::endl;
		}
	}

	// Copy constructor 
	// Just for heaven's sake as it does standard memberwise copy and all classes used
	// overload the assignment operator on their own 
	MolecularDynamics::MolecularDynamics(const MolecularDynamics& rhs)
	{
		set(rhs);
	}

	// Destructor
	// Actually, nothing to do  here 
	MolecularDynamics::~MolecularDynamics()
	{
	}

	// The assignment operator 
	const MolecularDynamics& MolecularDynamics::operator = (const MolecularDynamics& rhs)
	{
		set(rhs);
		return *this;
	}
	
	void MolecularDynamics::set(const MolecularDynamics& rhs)
	{
		// Check if some fool tries a self--assignment. In that case, nothing is done
		// although it would not be a problem, anyway, as just memberwise copying is
		// done (i.e., this assignment operator corresponds to the default assignment)
		if (&rhs != this)
		{
			options = rhs.options;
			valid_ = rhs.valid_;
			force_field_ptr_ = rhs.force_field_ptr_;
			maximal_number_of_iterations_ = rhs.maximal_number_of_iterations_;
			number_of_iteration_ = rhs.number_of_iteration_;
			time_step_ = rhs.time_step_;
			reference_temperature_ = rhs.reference_temperature_;
			current_temperature_ = rhs.current_temperature_;
			current_time_ = rhs.current_time_;
			energy_output_frequency_ = rhs.energy_output_frequency_;
			snapshot_frequency_ = rhs.snapshot_frequency_;
			snapshot_manager_ptr_ = rhs.snapshot_manager_ptr_;
			abort_by_energy_enabled_ = rhs.abort_by_energy_enabled_;
			abort_energy_ = rhs.abort_energy_;
		}
	}


	// This  method tells whether the MD class is fully functional
	bool MolecularDynamics::isValid() const
	{
		return valid_;
	}


	// This method does all necessary initialisations. It basically calls
	// another setup method where the work is really done
	bool MolecularDynamics::setup(ForceField& force_field, SnapShotManager* ssm)
	{
		// No specific Options have been handed over, so we use the options of the
		// force field instead.
		valid_ = setup(force_field, ssm, force_field.options);

		return valid_;
	}

	void MolecularDynamics::enableEnergyAbortCondition(bool state)
	{
		abort_by_energy_enabled_ = state;
	}

	bool MolecularDynamics::energyAbortConditionEnabled() const
	{
		return abort_by_energy_enabled_;
	}

	void MolecularDynamics::setEnergyToAbort(float value)
	{
		abort_energy_ = value;
	}
		
	float MolecularDynamics::getEnergyToAbort() const
	{
		return abort_energy_;
	}
		

	// This is the real setup method doing all the work! 
	bool MolecularDynamics::setup(ForceField & force_field, SnapShotManager* ssm, const Options& new_options)
	{
		// First check whether the force field is valid. If not, then it is useless
		// to do anything here.
		if (!force_field.isValid())
		{
			// The setup has failed for some reason. Output an error message.
			Log.error() << "Setup of instance of class 'MolecularDynamics' has failed." << std::endl;
			Log.error() << "ForceField is not valid!" << std::endl;

			valid_ = false;
			return false;
		}

		// store the force field and some important data
		force_field_ptr_ = &force_field;
		system_ptr_ = force_field_ptr_->getSystem();

		// check if the user wants to do snapshots 
		if ((ssm != 0) && (ssm->isValid()))
		{
			snapshot_manager_ptr_ = ssm;
		}
		else
		{
			snapshot_manager_ptr_ = 0;
		}

		atom_vector_ = force_field_ptr_->getAtoms();

		// Check if the system is valid 
		if (system_ptr_ == 0)
		{
			Log.error() << "MolecularDynamics::setup: ERROR: No valid system bound to the force field.";
			valid_ = false;
			return false;
		}

		// set the options 
		options = new_options;

		// Set (if not already done) all class-specific options to their default values
		// and adopt them for internal class variables 

		// The number of iterations (= time steps) that will be carried out 
		options.setDefaultInteger (MolecularDynamics::Option::MAXIMAL_NUMBER_OF_ITERATIONS,
															 MolecularDynamics::Default::MAXIMAL_NUMBER_OF_ITERATIONS);
		maximal_number_of_iterations_ = (Size)options.getInteger (MolecularDynamics::Option::MAXIMAL_NUMBER_OF_ITERATIONS);

    // An equivalent formulation by time
		options.setDefaultReal(MolecularDynamics::Option::MAXIMAL_SIMULATION_TIME,     
													 MolecularDynamics::Default::MAXIMAL_SIMULATION_TIME);


		// The start value for the iteration number 
		options.setDefaultInteger(MolecularDynamics::Option::NUMBER_OF_ITERATION,
														  MolecularDynamics::Default::NUMBER_OF_ITERATION);
		number_of_iteration_ = (Size)options.getInteger(MolecularDynamics::Option::NUMBER_OF_ITERATION);


		// The length of a single time step in picoseconds 
		options.setDefaultReal (MolecularDynamics::Option::TIME_STEP, MolecularDynamics::Default::TIME_STEP);
		time_step_ = options.getReal(MolecularDynamics::Option::TIME_STEP);

		// The reference temperature. This temperature is important for MD runs with
		// heat-bath coupling enabled. 
		options.setDefaultReal(MolecularDynamics::Option::REFERENCE_TEMPERATURE,
													 MolecularDynamics::Default::REFERENCE_TEMPERATURE);
		reference_temperature_ = options.getReal(MolecularDynamics::Option::REFERENCE_TEMPERATURE);



		// The current time of the simulation. This is useful when several MD runs shall be done.
		options.setDefaultReal (MolecularDynamics::Option::CURRENT_TIME, MolecularDynamics::Default::CURRENT_TIME);
		current_time_ = options.getReal(MolecularDynamics::Option::CURRENT_TIME);

		// After how many iterations is energy data saved and the current kinetic
		// temperature calculated and saved 
		options.setDefaultInteger(MolecularDynamics::Option::ENERGY_OUTPUT_FREQUENCY,
															MolecularDynamics::Default::ENERGY_OUTPUT_FREQUENCY);
		energy_output_frequency_ = (Size)options.getInteger (MolecularDynamics::Option::ENERGY_OUTPUT_FREQUENCY);

		// After how many iterations are positions and velocities saved 
		options.setDefaultInteger (MolecularDynamics::Option::SNAPSHOT_FREQUENCY,
															 MolecularDynamics::Default::SNAPSHOT_FREQUENCY);

		snapshot_frequency_ = (Size)options.getInteger (MolecularDynamics::Option::SNAPSHOT_FREQUENCY);

		// Calculate the current temperature of the system (via kinetic energy)
		updateInstantaneousTemperature();

		valid_ = true;
		return true;
	}


	// This method allows us to set the current number of iteration for the MD simulation
  // The corresponding time is set as well. 
	void MolecularDynamics::setNumberOfIteration (Size number)
	{
		number_of_iteration_ = number;
    current_time_ = number * time_step_; 

    options[MolecularDynamics::Option::NUMBER_OF_ITERATION] = number;
    options[MolecularDynamics::Option::CURRENT_TIME] = current_time_; 
	}

	// This method allows us to get the current number of iteration for the MD simulation
	Size MolecularDynamics::getNumberOfIterations() const
	{
		return number_of_iteration_;
	}


	// This method sets the maximal number of iterations to be simulated 
	void MolecularDynamics::setMaximalNumberOfIterations (Size maximum)
	{
		maximal_number_of_iterations_ = maximum;

    options[MolecularDynamics::Option::MAXIMAL_NUMBER_OF_ITERATIONS] = maximum;
	}

	// This method gets the maximal number of iterations to be simulated 
	Size MolecularDynamics::getMaximalNumberOfIterations() const
	{
		return maximal_number_of_iterations_;
	}

	// This method sets the maximal simulation time in picoseconds. 
	void MolecularDynamics::setMaximalSimulationTime(double maximum)
	{
		maximal_number_of_iterations_ = (Size) (maximum / time_step_);

    options[MolecularDynamics::Option::MAXIMAL_NUMBER_OF_ITERATIONS] = maximal_number_of_iterations_; 

    double time = maximal_number_of_iterations_ * time_step_; 
    options[MolecularDynamics::Option::MAXIMAL_SIMULATION_TIME] = time; 
	}

	// This method gets the maximal simulation time                        
	double MolecularDynamics::getMaximalSimulationTime() const
	{
		return maximal_number_of_iterations_ * time_step_;
	}

  // This method sets the time step for the numerical integration
  void MolecularDynamics::setTimeStep(double step)
  {
	  if (step > 0)
		{
			time_step_ = step; 
			options[MolecularDynamics::Option::TIME_STEP] = time_step_; 
		}
		else
	  {
			Log.warn() << "Assigning a time step of zero is not allowed. "
								 << "Using old value." << std::endl;
		}
  }

  // This method gets the time step for the numerical integration
  double MolecularDynamics::getTimeStep() const 
  {
	  return time_step_; 
  }


	// This method allows us to reset the reference temperature 
	// without doing a full setup again 
	void MolecularDynamics::setReferenceTemperature (double temperature)
	{
		reference_temperature_ = temperature;

    options[MolecularDynamics::Option::REFERENCE_TEMPERATURE] = reference_temperature_; 
	}

	// This methods resets the current time 
  // The difference between the maximal simulation time and current time is
  // being simulated. 
	void MolecularDynamics::setCurrentTime (double time)
	{
		current_time_ = time;
		number_of_iteration_ = (Size) (time / time_step_);

    options[MolecularDynamics::Option::CURRENT_TIME] = current_time_; 
    options[MolecularDynamics::Option::NUMBER_OF_ITERATION] = number_of_iteration_; 
	}

	// This method allows us to reset the output frequency for 
	// energy values
	void MolecularDynamics::setEnergyOutputFrequency (Size number)
	{
		if (number > 0)
    {
			energy_output_frequency_ = number;
      options[MolecularDynamics::Option::ENERGY_OUTPUT_FREQUENCY] = number; 
    }
		else
		{
			Log.warn() << "Assigning an energy_output_frequency of zero is not allowed. Using old value." << std::endl;
		}
	}


	// This method allows us to reset the frequency of taking snapshots 
	// of the system
	void MolecularDynamics::setSnapShotFrequency (Size number)
	{
		if (number > 0)
		{
			snapshot_frequency_ = number;
      options[MolecularDynamics::Option::SNAPSHOT_FREQUENCY] = snapshot_frequency_; 
		}
		else
		{
			Log.warn() << "Assigning a snapshot_frequency_ of zero is not allowed. "
								 << "Using old value." << std::endl;
		}
	}

	// Obtain the current frequency for energy output (if the user has
	// forgotten it or what?)
	Size MolecularDynamics::getEnergyOutputFrequency() const
	{
		return energy_output_frequency_;
	}

	// Obtain the current frequency for trajectory output (if the user has
	// forgotten it or what?)
	Size MolecularDynamics::getSnapShotFrequency() const
	{
		return snapshot_frequency_;
	}

	// This method  returns the current (kinetic) temperature of the system
	double MolecularDynamics::getTemperature() const
	{
		return current_temperature_;
	}


	// This method returns the current potential energy
	double MolecularDynamics::getPotentialEnergy() const
	{
		return force_field_ptr_->getEnergy();
	}

	// This method returns the current kinetic energy
	double MolecularDynamics::getKineticEnergy() const
	{
		return kinetic_energy_;
	}

	// This method returns the current total energy
	double MolecularDynamics::getTotalEnergy() const
	{
		return total_energy_;
	}

	// This method returns the current time of the MD run
	double MolecularDynamics::getTime() const
	{
		return current_time_;
	}

	// This method returns the force field the system is bound to 
	ForceField *MolecularDynamics::getForceField() const
	{
		return force_field_ptr_;
	}

	// This method will be overwritten by a subclass
	bool MolecularDynamics::simulateIterations(Size /* number */, bool /* restart */)
	{
		return true;
	}

	// This method does the actual simulation stuff
  // It runs for getMaximalNumberOfIterations() iterations. 
  // restart=true means that the counting of iterations is started with the end
  // value of the previous run
	bool MolecularDynamics::simulate(bool restart)
	{
		return simulateIterations(maximal_number_of_iterations_, restart);
	}


	// This method does the actual simulation stuff
	// It runs for the indicated simulation time in picoseconds. 
  // restart=true means that the counting of iterations is started with the end
  // value of the previous run
	bool MolecularDynamics::simulateTime(double simulation_time, bool restart)
	{
		Size number;

		// determine the number  of iterations and call 'simulateIterations'
		if (valid_)
		{
			number = static_cast<Size>(simulation_time / time_step_);
			if (!simulateIterations (number, restart)) return false;
		}

		return true;
	}

	// This method will be overwritten by a subclass
	bool MolecularDynamics::specificSetup()
	{
		return true;
	}

	// This method calculates the instantaneous temperature (from velocities)
	// and thereby also the kinetic energy 
	void MolecularDynamics::updateInstantaneousTemperature()
	{
		// First define some local variables 
		double sq_velocity;
		double sum;

	  vector <Atom*>::iterator atom_it;

	  sum = 0.0;

		// The current temperature (calculated as instantaneous kinetic energy)
		// If we use a periodic boundary box, then we use the molecules' centres of
		// gravity, otherwise we iterate directly over the individual atoms of the system 
	  atom_it = atom_vector_.begin();

		if (force_field_ptr_->periodic_boundary.isEnabled())
		{
			double molecule_mass = 0;
			float mass;

			Size no_of_molecules = 0;

			Molecule* old = 0;
			Molecule* current = 0;
			Vector3 centre_velocity;


		  centre_velocity.x = centre_velocity.y = centre_velocity.z = 0;

			// Get the molecule of the first atom in the system 
			if (atom_it != atom_vector_.end())
			{
				old = (*atom_it)->getMolecule();
			}

			// Iterate over all atoms in the system and determine for every
			// molecule the velocity of its centre of mass
			// This velocity contributes to the overall temperature 
		  vector<Atom*>::iterator end_it = atom_vector_.end();

			while (atom_it != end_it)
			{
				// determine the molecule of the current atom
				current = (*atom_it)->getMolecule();

				if (current != old)
				{
					// This atom belongs to an other molecule than the 
					// previous atom -> all atoms of the previous 
					// molecule have been visited
					centre_velocity /= molecule_mass;
					sq_velocity = centre_velocity * centre_velocity;
					sum += molecule_mass * sq_velocity;

					no_of_molecules++;

					// reset some values for the new molecule
					molecule_mass = 0;
					centre_velocity.x = centre_velocity.y = centre_velocity.z = 0;

					// the new molecule is now the old one
					old = current;
				}

				// add the atom's velocity to the total velocity  
				// of the current molecule
				mass = (*atom_it)->getElement().getAtomicWeight();
				molecule_mass += mass;
				centre_velocity += mass * (*atom_it)->getVelocity();


				// go on to the next atom
				++atom_it;
			}

			// The last molecule must be added as this is not done in the while-loop
			if (molecule_mass == 0)
			{
				// A strange molecule. Let the centre_velocity as it is
			}
			else
			{
				centre_velocity /= molecule_mass;
			}

			sq_velocity = centre_velocity * centre_velocity;
			sum += molecule_mass * sq_velocity;
			no_of_molecules++;

			// The factor 0.01 transfers Da * A^2/ps^2 to kJ/mol 
			kinetic_energy_ = 0.01 * 0.5 * sum;

			// We are now ready to calculate the instantaneous kinetic
			// temperature 
			// T = 2 * E_kin / (3 * #molecules * k_B)
			// The factor 1e3 / AVOGADRO transforms it into K
			current_temperature_ = 1e3 / Constants::AVOGADRO * 2 *
			kinetic_energy_ / (3.0 * no_of_molecules * Constants::BOLTZMANN);
		}
		else
		{
			// No periodic boundary conditions, i.e., just a few molecules 
			// are in the system
			Size no_of_atoms = 0;

			// Iterate over all atoms and calculate \sum m_i \cdot v_i^2  
			for (atom_it = atom_vector_.begin(); atom_it != atom_vector_.end(); ++atom_it)
			{
				no_of_atoms++;
				sq_velocity = (*atom_it)->getVelocity() * (*atom_it)->getVelocity();
				sum += (*atom_it)->getElement().getAtomicWeight() * sq_velocity;

			}

			// The factor 0.01 transfers Da * A^2/ps^2 to kJ/mol 
			kinetic_energy_ = 0.01 * 0.5 * sum;

			if (no_of_atoms == 0)
			{
				// a system with no atoms?!
				// do nothing with the temperature 
				current_temperature_ = 0;
			}
			else
			{
				// T = 2 * E_kin / (3 * #atoms * k_B)
				// multiply by 1/(3 * n * k_B) 
				// The factor 1e3 / Constants::AVOGADRO transforms it into K
				current_temperature_ = 1e3 / Constants::AVOGADRO * 2 *
					kinetic_energy_ / (3.0 * no_of_atoms * Constants::BOLTZMANN);
			}

		}

		// Determine the total energy of the selected atoms 
		total_energy_ = kinetic_energy_ + force_field_ptr_->getEnergy();

	}	// end of 'updateInstantaneousTemperature' 

}	// end of namespace BALL