File: lineSearch.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (666 lines) | stat: -rw-r--r-- 18,809 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: lineSearch.C,v 1.20.8.3 2007/08/17 09:22:31 anhi Exp $
//

#include <BALL/MOLMEC/MINIMIZATION/lineSearch.h>
#include <BALL/MOLMEC/MINIMIZATION/energyMinimizer.h>
#include <BALL/MOLMEC/COMMON/atomVector.h>
#include <BALL/MOLMEC/COMMON/forceField.h>

// Parameter alpha for 'sufficient energy decrease'.
#define LINESEARCH__DEFAULT_ALPHA 1.e-4

// Parameter beta for 'sufficient gradient reduction'.
#define LINESEARCH__DEFAULT_BETA 0.9

// Maximum number of interpolation steps for a line search.
#define LINESEARCH__DEFAULT_MAX_STEPS 50

// Lower bound for energy values.
#define LINESEARCH__DEFAULT_MIN_ENERGY -1.e+10

// Nonnegative relative tolerance for an acceptable step.
#define LINESEARCH__DEFAULT_XTOL 0.1

//#define BALL_DEBUG
#undef BALL_DEBUG

namespace BALL 
{
	// Default constructor
	LineSearch::LineSearch()
		:	alpha_(LINESEARCH__DEFAULT_ALPHA),
			beta_(LINESEARCH__DEFAULT_BETA),
			max_steps_(LINESEARCH__DEFAULT_MAX_STEPS),
			lower_energy_bound_(LINESEARCH__DEFAULT_MIN_ENERGY),
			stptol_(LINESEARCH__DEFAULT_XTOL),
			is_bracketed_(false),
			minimizer_(0)
	{
	}
	
	
	// Copy constructor 
	LineSearch::LineSearch(const LineSearch& line_search)
		:	alpha_(line_search.alpha_),
			beta_(line_search.beta_),
			max_steps_(line_search.max_steps_),
			lower_energy_bound_(line_search.lower_energy_bound_),
			stptol_(line_search.stptol_),
			is_bracketed_(line_search.is_bracketed_),
			minimizer_(line_search.minimizer_)
	{
	}
	
	// Assignment operator
	const LineSearch& LineSearch::operator = (const LineSearch& line_search)
	{
		alpha_              = line_search.alpha_;
		beta_               = line_search.beta_;
		max_steps_          = line_search.max_steps_;
		lower_energy_bound_ = line_search.lower_energy_bound_;
		stptol_             = line_search.stptol_;
		is_bracketed_       = line_search.is_bracketed_;
		minimizer_          = line_search.minimizer_;
		
		return *this;
	}
	
	// Detailed constructor
	LineSearch::LineSearch(EnergyMinimizer& minimizer)
		:	alpha_(LINESEARCH__DEFAULT_ALPHA),
			beta_(LINESEARCH__DEFAULT_BETA),
			max_steps_(LINESEARCH__DEFAULT_MAX_STEPS),
			lower_energy_bound_(LINESEARCH__DEFAULT_MIN_ENERGY), 
			stptol_(LINESEARCH__DEFAULT_XTOL),
			is_bracketed_(false),
			minimizer_(&minimizer)
	{
	}
	
	// Destructor
	LineSearch::~LineSearch()
		
	{
	}
	
	// Set the parameter alpha_.
	void LineSearch::setAlpha(double alpha)
	{
		alpha_ = alpha;
	}
	
	// Get the parameter alpha_.
	double LineSearch::getAlpha() const
	{
		return alpha_;
	}
	
	// Set the parameter beta_.
	void LineSearch::setBeta(double beta)
	{
		beta_ = beta;
	}
	
	// Get the parameter beta_.
	double LineSearch::getBeta() const
	{
		return beta_;
	}
	
	// Set the parameter max_steps_.
	void LineSearch::setMaxSteps(Size max_steps)
	{
		max_steps_	= max_steps;
	}
	
	// Get the parameter max_steps_.
	Size LineSearch::getMaxSteps() const
	{
		return max_steps_;
	}
	
	// Set the lower bound on energy values.
	void LineSearch::setLowerBound(double lbound)
	{
		lower_energy_bound_ = lbound;
	}
	
	// Get the lower bound on energy values.
	double LineSearch::getLowerBound() const
	{
		return lower_energy_bound_;
	}
	
	// Set the nonnegative relative tolerance for an acceptable step.
	void LineSearch::setXTol(double xtol)
	{
		stptol_ = xtol;
	}

	// Get the nonnegative relative tolerance for an acceptable step.
	double LineSearch::getXTol() const
	{
		return stptol_;
	}
	
	// Set the flag is_bracketed_.
	void LineSearch::setBracketedFlag(bool bracktd)
	{
		is_bracketed_ = bracktd;
	}
	
	
	// Return whether a minimizer has already been bracketed.
	bool LineSearch::isBracketed() const
	{
		return is_bracketed_;
	}
	
	// Set the calling minimizer class.
	void LineSearch::setMinimizer(EnergyMinimizer& minimizer)
	{
		minimizer_ = &minimizer;
	}
	
	/*	The minimizer optimizes the energy of the system using a two stage line 
			search algorithm based on a method of More and Thuente.
	*/
	bool LineSearch::minimize(double& stp, bool keep_gradient)
	{
		#ifdef BALL_DEBUG
			Log.info() << "LS:minimize(" << stp << ")" << std::endl;
		#endif

		// Check whether a valid minimizer and a valid force field exist.
		if ((minimizer_ == 0) || (minimizer_->getForceField() == 0))
		{
			return false;
		}
		
		// Define some aliases for convenience.
		AtomVector&				atoms(const_cast<AtomVector&>(minimizer_->getForceField()->getAtoms()));
		const Gradient&		direction(minimizer_->getDirection());
		EnergyMinimizer&	minimizer(*minimizer_);
		Gradient&					gradient(minimizer.getGradient());
		Gradient&					initial_gradient(minimizer.getInitialGradient());
		
		// If we do not have a valid gradient for the first step,
		// calculate it.
		if (!initial_gradient.isValid())
		{
			// Reset the atoms to the start position (stp = 0)
			atoms.resetPositions();
			
			// Calculate the initial energy and forces
			minimizer_->updateForces();
			minimizer_->updateEnergy();
			initial_gradient = gradient;
			
			// Force a recalculation of the current gradient
			// as well since updateForces overwrote everything!
			gradient.invalidate();
		}
		
		// Initial energy value.
		double f_init = minimizer_->getInitialEnergy();
		
		// Initial directional derivative.
		double g_init = (initial_gradient * direction);

		// We have obviously found our minimum along this direction to 
		// reasonable precision! We return false to force a restart of
		// the minimization procedure.
		if (fabs(g_init) < 1e-16)
		{
			stp = 0;
			return false;
		}
		
		// Minimum and maximum stepsizes.
		double minstp = 0.;
		
		// Compute the maximum step size by the minimizers 'maximum displacement'
		double maxstp = minimizer.getMaximumDisplacement();

		if (maxstp < 0.)
		{
			// No maximum displacement given, estimate the maximum stepsize
			maxstp = (lower_energy_bound_-f_init)/(beta_*g_init);
		}
		else
		{
			// Find the maximum translation
			Gradient::ConstIterator git(direction.begin());
			double max = 0.;
			double cur = 0.;
			for (; git != direction.end(); ++git)
			{
				cur = git->getSquareLength();
				if (cur > max)
				{
					max = cur;
				}
			}
			max = sqrt(max);
			if (max > 1.e-16)
			{
				maxstp /= max;
			}
			else
			{
				// Something went wrong, we estimate the maximum stepsize
				maxstp = (lower_energy_bound_-f_init)/(beta_*g_init);
			}
		}
		
		// A minimum has not been bracketed so far.
		is_bracketed_ = false;
		
		// Set initial step size to 1 (with safeguard)
		stp = (1. < maxstp) ? 1. : maxstp;
		
		// Used for directional derivative stopping criterion
		double g_test = alpha_*g_init;
		
		// Used for computations of the interval width 
		// (interval which brackets the minimizer).
		double int_width = maxstp - minstp;
		double bisec_int_width = int_width / 0.5;
		
		// st_a and st_b will bracket the minimizer
		double st_a = 0.;
		double st_b = 0.;
		
		// f_a and f_b will contain the energy values at st_a and st_b.
		double f_a = f_init;
		double f_b = f_init;
		
		// g_a and g_b will contain the directional derivatives at st_a and st_b.
		double g_a = g_init;
		double g_b = g_init;
		
		// Used for internal bracketing
		double stmin = 0.;
		double stmax = stp + stp*4.;
		
		// If we do not have a valid current gradient for the first step, or if we are
		// told to force an update (i.e. keep_gradient == false), or if 
		// our internal safeguards force stp not to equal 1, calculate it
		if (!keep_gradient || !gradient.isValid() || stp != 1.)
		{
			#ifdef BALL_DEBUG
				Log << "  LineSearch: recalculate Energy/grad @ l = " << stp << " " << std::endl;
			#endif
			
			// Recalculate the gradient and energy
			atoms.moveTo(direction, stp);
			minimizer_->updateEnergy();
			minimizer_->updateForces();
		}
		
		// Energy value at stp.
		double f = minimizer_->getEnergy();
		
		// Directional derivative at stp.
		double g = (gradient * direction);
		
		// Remember the best step and the best energy
		double best_stp = 0.0;
		double best_f = f_init;
		
		if (f < f_init)
		{
			best_f = f;
			best_stp = stp;
		}
		
		Size iteration = 0;
		bool result = false;
		
		// We start with the first stage
		bool first_stage = true;
		
		// Used for energy decrease criterion
		double f_test = f_init + stp*g_test;
		while (!result && iteration < max_steps_)
		{
			// First check a few numerical things
			if (is_bracketed_ && ((stp < stmin) || (stp > stmax)))
			{
				// Rounding errors prevent progress
				result = false;
				break;
			}
			if (is_bracketed_ && stmax - stmin <= stptol_*stmax)
			{
				// Xtol condition satisfied
				result = true;
				break;
			}
			
			// Test for convergence.
			if ((f <= f_test) && (fabs(g) <= beta_*(-g_init)))
			{
				result = true;
				break;
			}
			
			if ((stp == maxstp) && (f <= f_test) && (g <= g_test))
			{
				// Maximum stepsize achieved. This doesn't have to be a problem.
				// We return a 'false' and let the calling algorithm decide
				// what to do. A 'false' means that neither the convergence 
				// conditions hold (weak Wolfe conditions) nor the condition 
				// on the step tolerance is satisfied.
				result = false;
				break;
			}
			if ((stp == minstp) && ((f > f_test) || (g >= g_test)))
			{
				// Minimum stepsize achieved. This doesn't have to be a problem.
				// We return a 'false' and let the calling algorithm decide
				// what to do. A 'false' means that neither the convergence 
				// conditions hold (weak Wolfe conditions) nor the condition 
				// on the step tolerance is satisfied.
				result = false;
				break;
			}
			
			
			// In first stage we use a modified function, proposed by More and Thuente,
			// in case of a lower function value but the decrease is not sufficient.
			if (first_stage && (f <= f_a) && (f > f_test))
			{
				// We have to compute the modified energy... 
				double f_mod = f - stp*g_test;
				double f_a_mod = f_a - st_a*g_test;
				double f_b_mod = f_b - st_b*g_test;
				
				// ... and derivative values.
				double g_mod = g - g_test;
				double g_a_mod = g_a - g_test;
				double g_b_mod = g_b - g_test;
				
				// Compute a safeguarded, interpolating step and use the modified function.
				takeStep(st_a, f_a_mod, g_a_mod, st_b, f_b_mod, g_b_mod, stp, f_mod, g_mod, stmin, stmax);
				
				// Compute back all values for the original energy function.
				f_a = f_a_mod + st_a * g_test;
				f_b = f_b_mod + st_b * g_test;
				g_a = g_a_mod + g_test;
				g_b = g_b_mod + g_test;
			}
			else
			{
				// Compute a safeguarded, interpolating step.
				takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, stmin, stmax);
			}
			
			if (is_bracketed_)
			{
				// The minimizer has already been bracketed.
				if (fabs(st_b - st_a) >= bisec_int_width*0.66)
				{
					// We make a bisection step.
					stp = st_a + (st_b - st_a)/2.;
				}
				bisec_int_width = int_width;
				int_width = fabs(st_b - st_a);
				
				// Set the minimum and maximum steps allowed for stp.
				stmin = std::min(st_a, st_b);
				stmax = std::max(st_a, st_b);
			}
			else
			{
				// The minimizer couldn't be bracketed so far, thus we make an extrapolation step.
				// Set the minimum and maximum steps allowed for stp.
				stmin = stp + (stp - st_a) * 1.1;
				stmax = stp + (stp - st_a) * 4.;
			}
			
			// Use the safeguards...
			stp = (stp < minstp) ? minstp : stp;
			stp = (stp < maxstp) ? stp : maxstp;
			
			if (((is_bracketed_) && ((stp <= stmin) || (stp >= stmax))) || ((is_bracketed_) && (stmax - stmin <= stptol_ * stmax)))
			{
				// If we are not able to make further progress, let stp be the best point we could find.
				stp = st_a;
			}
			
			// Obtain new energy and derivative.
			
			// Move the atoms to the new position.
			atoms.moveTo(direction, stp);
			
			// Update energy and gradient
			f = minimizer.updateEnergy();
			minimizer.updateForces();
			g = (gradient * direction);
			
			// Check whether we can enter the second stage.
			f_test = f_init + stp*g_test;
			if ((f <= f_test) && (g >= 0.))
			{
				first_stage = false;
			}
			
			// Remember the best stepsize found
			// (just in case)
			if (f < best_f)
			{
				best_stp = stp;
				best_f = f;
			}
			
			// Increment the number of iterations.
			iteration++;
		}
		
		// If the line search failed, reset the atom positions and return the
		// best stepsize we have to offer
		if (!result)
		{
			stp = best_stp;
			gradient.invalidate();
			
			// In this case, we also want to move the atoms to the position of the
			// best step, if the energy at that point has improved.
			if (best_f < f_init)
			{
				atoms.moveTo(direction, stp);
			}
			else
			{
				atoms.resetPositions();
			}
		}
		
		return result;
	}

	// Computes a safeguarded step for a search procedure by case differentiation 
	// dependend on whether a minimum could already be bracketed or not.
	// This function is based on the proposed step computation of Jorge J. More and David J. Thuente.
	// See: J. More and D. Thuente, "Line search algorithms with guaranteed	sufficient decrease," 
	// ACM Transactions on Mathematical Software 20 (1994), no. 3, pp. 286-307.
	// A Fortran implementation can be found in MINPACK and MINPACK-2.
	void LineSearch::takeStep(double &st_a, double &f_a, double &g_a, double &st_b, 
					double &f_b, double &g_b, double &stp, double f, double g, double minstp, double maxstp)
	{
		// The new step, which will be returned by stp on exit.
		double new_stp;
		
		// Compute whether we have directional derivatives of opposite sign.
		bool opp_sign =  g*(g_a/fabs(g_a)) < 0.;
		
		// Check the four possible cases.
		if (f > f_a)
		{
			// First case: We have a higher function value, so the minimum is bracketed.
		
			double theta = (f_a - f)*3./(stp - st_a) + g_a + g;
			double s = std::max(fabs(theta), fabs(g_a));
			s = (stp < st_a) ? -std::max(s, fabs(g)) : std::max(s, fabs(g));
			double gamma = s*sqrt((theta/s)*(theta/s)-(g_a/s)*(g/s));
			
			// We check both, the quadratic and the cubic step.
			// Compute the cubic step.
			double cub_stp = st_a + (((gamma - g_a) + theta)/(((gamma - g_a) + gamma) + g))*(stp - st_a);
			
			// Compute the quadratic step.
			double quad_stp = st_a + ((g_a /((f_a - f)/(stp - st_a) + g_a))/2.)*(stp - st_a);
			
			// We prefer the cubic step if it is closer to st_a than the quadratic step, 
			// otherwise we use the average of the quadratic and the cubic one.
			new_stp = (fabs(cub_stp - st_a) < fabs(quad_stp - st_a)) ? cub_stp : cub_stp + (quad_stp - cub_stp)/2.;
			
			// Minimum has been bracketed.
			is_bracketed_ = true;
		}
		else if (opp_sign)
		{
			// Second case: We have a lower function value but directional derivatives
			// of opposite sign, so the minimum is bracketed.
			
			double theta = (f_a - f)*3./(stp - st_a) + g_a + g;
			double s = std::max(fabs(theta), fabs(g_a));
			s = (stp > st_a) ? -std::max(s, fabs(g)) : std::max(s, fabs(g));
			double gamma = s*sqrt((theta/s)*(theta/s) - (g_a/s)*(g/s));
			
			// We check both, the quadratic and the cubic step.
			// Compute the cubic step.
			double cub_stp = stp + (((gamma - g) + theta)/(((gamma - g) + gamma) + g_a))*(st_a - stp);
			
			// Compute the quadratic step.
			double quad_stp = stp + (g/(g - g_a))*(st_a - stp);
			
			// We prefer the cubic step if it is farther from stp than the quadratic one, 
			// otherwise the quadratic step is used.
			new_stp = (fabs(cub_stp - stp) > fabs(quad_stp - stp)) ? cub_stp : quad_stp;
			
			// Minimum has been bracketed
			is_bracketed_ = true;
		}
		else if (fabs(g) < fabs(g_a))
		{
			// Third case: We have a lower function value and derivatives of the same sign
			// but the magnitude of the derivative decreases. There are three subcases:
			
			// (1) The cubic tends to infinity
			// (2) The cubic tends to -infinity but its minimum is beyond stp
			// (3) The cubic tends to -infinity and its minimum is on this side of stp
		
			double theta = (f_a - f)*3./(stp - st_a) + g_a + g;
			double s = std::max(fabs(theta), fabs(g_a));
			s = (stp > st_a) ? -std::max(s, fabs(g)) : std::max(s, fabs(g));
			
			// We can have gamma = 0 only if the cubic doesn't tend to infinity.
			double gamma = s*sqrt(std::max(0., (theta/s)*(theta/s) - (g_a/s)*(g/s)));
			double r = ((gamma - g) + theta)/((gamma + (g_a - g)) + gamma);
			
			// We compute the cubic step only in case (1) and (2) (only these cases make sense).
			double cub_stp;
			if ((r < 0.) && (gamma != 0.))
			{
				cub_stp = stp + r*(st_a - stp);
			}
			else
			{
				// Use the safeguards...
				cub_stp = (stp > st_a) ? maxstp : minstp;
			}
			
			// Compute the quadratic step.
			double quad_stp = stp + (g/(g - g_a))*(st_a - stp);
			
			if (is_bracketed_)
			{
				// A minimizer has been bracketed. We prefer the cubic step if it
				// is closer to stp than the quadratic step. Otherwise we use the 
				// quadratic one.
				new_stp = (fabs(cub_stp - stp) < fabs(quad_stp - stp)) ? cub_stp : quad_stp;
				
				// Use the safeguards (remember: it is assumed in the bracketed case, that
				// stp lies in the interval between st_a and st_b).
				if (stp > st_a)
				{
					new_stp = std::min(new_stp, stp + (st_b - stp)*0.66);
				}
				else
				{
					new_stp = std::max(new_stp, stp + (st_b - stp)*0.66);
				}
			}
			else
			{
				// If a minimizer has not been bracketed, we prefer the cubic step 
				// if it is farther from stp than the quadratic step.
				// Otherwise we use the quadratic step.
				new_stp = (fabs(cub_stp - stp) > fabs(quad_stp - stp)) ? cub_stp : quad_stp;
				
				// Use the safeguards...
				if (maxstp < new_stp)
				{
					new_stp = maxstp;
				}
				if (minstp > new_stp)
				{
					new_stp = minstp;
				}
			}
		}
		else
		{
			// Fourth case: We have a lower function value and derivatives of 
			// the same sign, but the magnitude of the derivative doesn't 
			// decrease.
		
			if (is_bracketed_)
			{
				// If a minimum has already been bracketed, we use the cubic step
				double theta = (f - f_b)*3./(st_b - stp) + g_b + g;
				double s = std::max(fabs(theta), fabs(g_b));
				s = (stp > st_b) ? -std::max(s, fabs(g)) : std::max(s, fabs(g));
				double gamma = s*sqrt((theta/s)*(theta/s) - (g_b/s)*(g/s));
				
				// Compute the cubic step.
				new_stp = stp + (((gamma - g) + theta)/(((gamma - g) + gamma) + g_b))*(st_b - stp);
			}
			else 
			{
				// If we couldn't bracket the minimum so far, the 
				// step must be either minstp or maxstp.
				new_stp = (stp > st_a) ? maxstp : minstp;
			}
		}
		
		// Do all updates for the interval that contains a minimizer.	
		if (f > f_a)
		{
			st_b = stp;
			f_b = f;
			g_b = g;
		}
		else
		{
			if (opp_sign)
			{
				st_b = st_a;
				f_b = f_a;
				g_b = g_a;
			}
			st_a = stp;
			f_a = f;
			g_a = g;
		}
		
		// Set the new step.
		stp = new_stp;
	}

} // namespace BALL