1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include<BALL/NMR/EFShiftProcessor.h>
#include <BALL/KERNEL/bond.h>
#include <BALL/FORMAT/parameterSection.h>
#include <limits>
using namespace std;
namespace BALL
{
const char* EFShiftProcessor::PROPERTY__EF_SHIFT = "ElectricFieldShift";
EFShiftProcessor::EFShiftProcessor()
:ShiftModule()
{
}
EFShiftProcessor::EFShiftProcessor(const EFShiftProcessor& processor)
: ShiftModule(processor),
bond_list_(processor.bond_list_),
effector_list_(processor.effector_list_),
first_atom_expressions_(processor.first_atom_expressions_),
second_atom_expressions_(processor.second_atom_expressions_),
epsilon1_(processor.epsilon1_),
epsilon2_(processor.epsilon2_),
charge_map_(processor.charge_map_),
exclude_residue_field_(processor.exclude_residue_field_),
exclude_adjacent_residue_field_(processor.exclude_adjacent_residue_field_),
carbonyl_influences_amide_field_(processor.carbonyl_influences_amide_field_),
exclude_solvent_field_(processor.exclude_solvent_field_),
cut_off2_(processor.cut_off2_),
charge_factor_(processor.charge_factor_)
{
}
EFShiftProcessor::~EFShiftProcessor()
{
}
void EFShiftProcessor::init()
{
// By default, we assume the worst...
valid_ = false;
// If no parameters are assigned, abort immediately.
if (parameters_ == 0)
{
return;
}
// Check that the parameter file contains the correct section...
ParameterSection parameter_section;
parameter_section.extractSection(*parameters_, "ElectricFieldEffect");
// ...and that this section contains the correct column names.
if ( !parameter_section.hasVariable("first_atom") || !parameter_section.hasVariable("second_atom")
|| !parameter_section.hasVariable("epsilon1") || !parameter_section.hasVariable("epsilon2"))
{
return;
}
// Check for the option "exclude_residue_field".
exclude_residue_field_ = false;
if (parameter_section.options.has("exclude_residue_field"))
{
exclude_residue_field_ = parameter_section.options.getBool("exclude_residue_field");
}
// Check for the option "exclude_adjacent_field".
exclude_adjacent_residue_field_ = false;
if (parameter_section.options.has("exclude_adjacent_residue_field"))
{
exclude_adjacent_residue_field_ = parameter_section.options.getBool("exclude_adjacent_residue_field");
}
// Check for the option "carbonyl_influences_amide_field".
carbonyl_influences_amide_field_ = false;
if (parameter_section.options.has("carbonyl_influences_amide_field"))
{
carbonyl_influences_amide_field_ = parameter_section.options.getBool("carbonyl_influences_amide_field");
}
// Check for the option "exclude_solvent_field".
exclude_solvent_field_ = false;
if (parameter_section.options.has("exclude_solvent_field"))
{
exclude_solvent_field_ = parameter_section.options.getBool("exclude_solvent_field");
}
// Clear the arrays containing the expressions, the parameters, and the charge map.
first_atom_expressions_.clear();
second_atom_expressions_.clear();
epsilon1_.clear();
epsilon2_.clear();
charge_map_.clear();
// Extract the atom expressions and the corresponding polarizabilities.
Position first_atom_column = parameter_section.getColumnIndex("first_atom");
Position second_atom_column = parameter_section.getColumnIndex("second_atom");
Position epsilon1_column = parameter_section.getColumnIndex("epsilon1");
Position epsilon2_column = parameter_section.getColumnIndex("epsilon2");
for (Position counter = 0; counter < parameter_section.getNumberOfKeys(); counter++)
{
first_atom_expressions_.push_back(Expression(parameter_section.getValue(counter, first_atom_column)));
second_atom_expressions_.push_back(Expression(parameter_section.getValue(counter, second_atom_column)));
epsilon1_.push_back(parameter_section.getValue(counter, epsilon1_column).toFloat());
epsilon2_.push_back(parameter_section.getValue(counter, epsilon2_column).toFloat());
}
// Extract the charge assignment map.
bool result = parameter_section.extractSection(*parameters_, "Charges");
// Check for the cut off.
cut_off2_ = std::numeric_limits<float>::max();
if (parameter_section.options.has("cut_off"))
{
// Store the squared value of the cut off in the member cut_off2_.
cut_off2_ = parameter_section.options.getReal("cut_off");
cut_off2_ *= cut_off2_;
}
// For numeric aspects, here, the esu unit is divided by
// the charge_factor_, such that the molecules charges (which are given
// by PDB.org in elementary units) can easily be multiplied with.
// When computing the shift in the finish method, the charge_factor
// is again multiplied with.
// Default factor is 1.0 - default unit are elementary charges (e0)
charge_factor_ = 1.0;
if (parameter_section.options.has("unit"))
{
String unit = parameter_section.options["unit"];
if (unit == "e0")
{
charge_factor_ = 1.0;
}
else if (unit == "ESU")
{
charge_factor_ = 1.0 / 4.8;
}
else
{
Log.warn() << "EFShiftProcessor::init: unknown unit for charges in file "
<< parameters_->getFilename() << ", section [Charges]: "
<< unit << " - using default unit elemtary charges (e0)." << endl;
}
}
// Built the charge hash map.
if (result && parameter_section.hasVariable("charge"))
{
Position charge_column = parameter_section.getColumnIndex("charge");
for (Position i = 0; i < parameter_section.getNumberOfKeys(); i++)
{
charge_map_[parameter_section.getKey(i)] = charge_factor_ * parameter_section.getValue(i, charge_column).toFloat();
}
}
//printParameters_();
// Mark the module as initialized.
valid_ = true;
}
bool EFShiftProcessor::start()
{
// If the module is invalid, abort.
if (!isValid())
{
return false;
}
// Clear the target bond and the effector list.
bond_list_.clear();
effector_list_.clear();
return true;
}
bool EFShiftProcessor::finish()
{
// If the module is in an invalid state, abort.
if (!isValid())
{
return false;
}
// If there were no effectors or no target bonds, return immediately.
if (bond_list_.empty() || effector_list_.empty())
{
return true;
}
// If the solvent atoms should not act as sources.
if (exclude_solvent_field_)
{
// We build a new effector list.
list<Atom*> tmp_effector_list;
list<Atom*>::const_iterator effector_it = effector_list_.begin();
for (; effector_it != effector_list_.end(); ++effector_it)
{
if ((*effector_it)->getResidue() && (*effector_it)->getResidue()->getName() != "HOH")
{
tmp_effector_list.push_back(*effector_it);
}
}
// Replace the effector list.
effector_list_ = tmp_effector_list;
}
// Iterate over all target bonds.
std::vector<std::pair<Atom*, Atom*> >::iterator bond_it = bond_list_.begin();
Index current_bond = 0;
for (; bond_it != bond_list_.end(); ++bond_it)
{
Atom* first_atom = bond_it->first;
Atom* second_atom = bond_it->second;
// Given a target bond --
// calculate the electric field and the induced secondary shift.
Vector3 first_atom_pos = first_atom->getPosition();
Vector3 second_atom_pos = second_atom->getPosition();
Vector3 bond_vector(first_atom_pos - second_atom_pos);
// The electric field.
Vector3 E(0.0);
bool same_residue;
bool adjacent_residues;
// Test all effectors.
list<Atom*>::const_iterator effector_it = effector_list_.begin();
for (; effector_it != effector_list_.end(); ++effector_it)
{
// Exclude this effector--target combination from consideration if
// effector is a cabonyl oxygen (O) and the target is an amid hydrogen (HN)
// and carbonyl_influences_amide_field is set (read from options in init()).
if ( !carbonyl_influences_amide_field_ && ((*effector_it)->getName() == "O")
&& ( (first_atom->getName() == "H") || second_atom->getName() == "H" )
)
{
continue;
}
// Exclude effectors from adjacent residue (fragment) if
// exclude_adjacent_residue_field is set (read from options in init()).
// and
// Exclude effectors from the same residue (fragment) if
// exclude_residue_field is set (read from options in init()).
// First test whether we have atoms from same residue.
same_residue = ((*effector_it)->getFragment() == first_atom->getFragment());
// Then test whether we have atoms in adjacent residues.
adjacent_residues = false;
adjacent_residues = ( (*effector_it)->getFragment()->isNextSiblingOf(*(first_atom->getFragment()))
||(*effector_it)->getFragment()->isPreviousSiblingOf(*(first_atom->getFragment()))
||(abs((*effector_it)->getResidue()->getID().toInt() - first_atom->getResidue()->getID().toInt()) <= 1));
// Exclude effectors if flags are set and exclude criterion holds.
if ( (!exclude_residue_field_ || !same_residue)
&& (!exclude_adjacent_residue_field_ || !adjacent_residues) )
{
Vector3 distance(first_atom_pos - (*effector_it)->getPosition());
float square_distance = distance.getSquareLength();
if (square_distance <= cut_off2_)
{
// Translate the charge to ESU (from elementary charges) if neccessary.
// NOTE: charge_factor_ is designed for switching between ESU and elementary units.
// For numerical aspects in the init() function the esu unit
// was divided by the charge factor, such that the molecules charges
// (given by PDB.org in elementary units) could easily be multiplied
// with. Here, we multiply again with the charge_factor_.
float charge = (*effector_it)->getCharge() * 1./charge_factor_;
// Add to the current contribution to the field.
E += distance * charge / (square_distance * distance.getLength());
}
}
}
// Calculate the field component E_z along the bond axis.
float Ez = (bond_vector * E) / bond_vector.getLength();
// Calculate the secondary shift induced by this field.
float delta_EF = epsilon1_[expression_number_[current_bond]] * Ez
+ epsilon2_[expression_number_[current_bond]] * E.getSquareLength();
// Store the shift in the corresponding properties.
float shift = first_atom->getProperty(ShiftModule::PROPERTY__SHIFT).getFloat();
shift += delta_EF;
first_atom->setProperty(ShiftModule::PROPERTY__SHIFT, shift);
first_atom->setProperty(PROPERTY__EF_SHIFT, delta_EF);
current_bond++;
}
// We have to do some ShiftX-y postprocessing:
// add for all CA-atoms 0.2 times the EF-shift-value of HA-atoms.
postprocessing_();
return true;
}
Processor::Result EFShiftProcessor::operator () (Composite& object)
{
// Here, we collect all target bonds and
// all charged atoms (as effectors of the electric field).
if (RTTI::isKindOf<Atom>(&object))
{
Atom* atom_ptr = RTTI::castTo<Atom>(object);
// Assign the charge (if it is defined for this atom).
String full_name = atom_ptr->getFullName();
full_name.substitute(":", " ");
atom_ptr->setCharge(0.0);
if (charge_map_.has(full_name))
{
atom_ptr->setCharge(charge_map_[full_name]);
}
else
{
// Try wildcard match for the residue name.
full_name = "* " + atom_ptr->getName();
if (charge_map_.has(full_name))
{
atom_ptr->setCharge(charge_map_[full_name]);
}
}
// Store all charged atoms in the effector list.
if (atom_ptr->getCharge() != 0.0)
{
effector_list_.push_back(atom_ptr);
}
Atom::BondIterator bond_it = atom_ptr->beginBond();
for (; +bond_it; ++bond_it)
{
Atom* first_atom = 0;
Atom* second_atom = 0;
bool match_found = false;
Index j = -1;
// Iterate over all target bond expressions and
// try to match them with the bond's atoms.
for (Position i = 0; i < first_atom_expressions_.size(); ++i)
{
// First, try to match first/first and second/second.
if ( (first_atom_expressions_[i](*(bond_it->getFirstAtom())))
&&(second_atom_expressions_[i](*(bond_it->getSecondAtom())))
)
{
// Remember the atoms and the bond type (for the parameters).
first_atom = const_cast<Atom*>(bond_it->getFirstAtom());
second_atom = const_cast<Atom*>(bond_it->getSecondAtom());
match_found = true;
j = i;
break;
}
// Otherwise: try first/second and second/first.
else if (first_atom_expressions_[i](*(bond_it->getSecondAtom()))
&& second_atom_expressions_[i](*(bond_it->getFirstAtom())))
{
// Remember the atoms and the bond type (for the parameters).
first_atom = const_cast<Atom*>(bond_it->getSecondAtom());
second_atom = const_cast<Atom*>(bond_it->getFirstAtom());
match_found = true;
j = i;
break;
}
}
if (match_found)
{
// Only include each bond once!
if (find(bond_list_.begin(), bond_list_.end(), pair<Atom*, Atom*>(first_atom, second_atom))==bond_list_.end())
{
bond_list_.push_back(std::pair<Atom*, Atom*>(first_atom, second_atom));
expression_number_.push_back(j);
}
}
}
}
return Processor::CONTINUE;
}
void EFShiftProcessor::printTargets_()
{
Log.info() << "********* \n EF: list of target bonds" << std::endl;
std::vector<std::pair<Atom*, Atom*> >::iterator tbond_it = bond_list_.begin();
for (; tbond_it != bond_list_.end(); ++tbond_it)
{
Log.info() << tbond_it->first->getFullName() << " " << tbond_it->second->getFullName() << std::endl;
}
Log.info() << "------------------------------\n" << std::endl;
}
void EFShiftProcessor::printEffectors_()
{
Log.info() << "********* \n EF: list of effectors" << std::endl;
list<Atom*>::const_iterator effector_it = effector_list_.begin();
for (; effector_it != effector_list_.end(); ++effector_it)
{
Log.info() << (*effector_it)->getFullName() <<" " << (*effector_it)->getName() << " " << std::endl;
}
Log.info() << "------------------------------\n" << std::endl;
}
void EFShiftProcessor::printParameters_()
{
Log.info() << "********* \n EF: list of parameters" << std::endl;
Log.info() << "exclude_residue_field " << exclude_residue_field_ << std::endl;
Log.info() << "exclude_adjacent_residue_field " << exclude_adjacent_residue_field_ << std::endl;
Log.info() << "carbonyl_influences_amide_field " << carbonyl_influences_amide_field_ << std::endl;
Log.info() << "exclude_solvent_field " << exclude_solvent_field_ << std::endl;
Log.info() << "cut_off" << cut_off2_ << std::endl;
Log.info() << "unit" << (charge_factor_ > 0.9 ? "e0" :"ESU")<< std::endl;
Log.info() << "------------------------------\n" << std::endl;
}
void EFShiftProcessor::postprocessing_()
{
System* system = NULL;
// Try to get the system.
std::vector<std::pair<Atom*, Atom*> >::iterator tbond_it = bond_list_.begin();
for (; tbond_it != bond_list_.end(); ++tbond_it)
{
if (RTTI::isKindOf<System>(&tbond_it->first->getRoot()))
{
system = dynamic_cast<System*>(&(tbond_it->first->getRoot()));
break;
}
}
if (system)
{
// Add for all CA-atoms 0.2 times the EF-shift-values of the bound HA-atom.
for (BALL::ResidueIterator r_it = system->beginResidue(); r_it != system->endResidue(); ++r_it)
{
Atom* CA = 0;
Atom* HA = 0;
for (BALL::AtomIterator at_it = r_it->beginAtom(); +at_it; ++at_it)
{
if (at_it->getName() == "CA")
CA = &(*at_it);
if (at_it->getName() == "HA")
HA = &(*at_it);
}
if (CA && HA)
{
float total = CA->getProperty(ShiftModule::PROPERTY__SHIFT).getFloat();
float ca_shift = CA->getProperty(BALL::EFShiftProcessor::PROPERTY__EF_SHIFT).getFloat();
float ha_shift = HA->getProperty(BALL::EFShiftProcessor::PROPERTY__EF_SHIFT).getFloat();
CA->setProperty(BALL::EFShiftProcessor::PROPERTY__EF_SHIFT, ca_shift + 0.2*ha_shift);
CA->setProperty(ShiftModule::PROPERTY__SHIFT, total+ 0.2*ha_shift );
}
}
}
else
{
Log.error() << "Error in EFShiftProcessor: no system found for postprocessing. ("
<< __FILE__ << " " << __LINE__ << ")" << std::endl;
}
}
} // namespace BALL
|