File: anisotropyShiftProcessor.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (384 lines) | stat: -rw-r--r-- 10,861 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/NMR/anisotropyShiftProcessor.h>

#include <BALL/KERNEL/atom.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/FORMAT/parameterSection.h>
#include <BALL/DATATYPE/string.h>

using namespace std;

namespace BALL
{

	const char* AnisotropyShiftProcessor::PROPERTY__ANISOTROPY_SHIFT = "AnisotropyShift";

	AnisotropyShiftProcessor::AnisotropyShiftProcessor()
		:	ShiftModule(),
			proton_list_(),
			eff_list_(),
			eff_list_2_(),
			ignore_other_chain_(false)
	{
	}

	AnisotropyShiftProcessor::AnisotropyShiftProcessor(const AnisotropyShiftProcessor& processor)
		:	ShiftModule(processor),
			proton_list_(processor.proton_list_),
			eff_list_(processor.eff_list_),
			eff_list_2_(processor.eff_list_2_),
			ignore_other_chain_(processor.ignore_other_chain_)
	{
	}

	AnisotropyShiftProcessor::~AnisotropyShiftProcessor()
		
	{
	}

	void AnisotropyShiftProcessor::init()
	{
		valid_ = false;

		if (parameters_ == 0)
		{
			return;
		}

		ParameterSection parameter_section;
		parameter_section.extractSection(*parameters_, "Anisotropy");

		if (parameter_section.options.has("ignore_other_chain"))
		{
			ignore_other_chain_ = parameter_section.options.getBool("ignore_other_chain");
		}

		valid_ = true;
	}

	bool AnisotropyShiftProcessor::finish()
	{
		// Abort if the parameters were not initialized correctly.
		if (!isValid())
		{
			return false;
		}

		// Abort if there's nothing to do (no protons).
		if (proton_list_.empty())
		{
			return true;
		}

		// Some constants.
		const float dX1   = -13.0;
		const float dX2   =  -4.0;
		const float dXN1  = -11.0;
		const float dXN2  =  -5.0;
		const float ndX1  = -11.0;
		const float ndX2  =   1.4;
		const float ndXN1 =  -7.0;
		const float ndXN2 =   1.0;

	  
		// Iterate over all protons affected.
		std::list<const Atom*>::const_iterator proton_it(proton_list_.begin());
		for (; proton_it != proton_list_.end(); ++proton_it)
		{
			// Total shift is zero initially
			float total_shift = 0.0;

			// Iterate over all effector bonds (all anisotropic bonds).
			std::list<const Bond*>::const_iterator eff_iter(eff_list_.begin());
			for (; eff_iter != eff_list_.end(); ++eff_iter)
			{
				// Iterate over all bonds of each effector atom.
				const Bond* bond = *eff_iter;
				const Atom* c_atom = bond->getFirstAtom();
				const Atom* o_atom = bond->getSecondAtom();
				if (c_atom->getElement() != PTE[Element::C])
				{
					o_atom = bond->getFirstAtom();
					c_atom = bond->getSecondAtom();
				}
				
				// Make surethe proton and the effector are from different residues.
				const Atom* x_atom = 0;
				if ((*proton_it)->getFragment() != c_atom->getFragment())
				{
					String name = c_atom->getName();
					if (name == "C")
					{
						name = "CA";
					}
					else 
					{
						if (name == "CG")
						{
							name = "CB";
						}
						else 
						{
							if (name == "CD")
							{
								name = "CG";
							}
						}
					}
					for (Position pos = 0; pos < c_atom->countBonds(); pos++)
					{
						const Bond& hbond = *c_atom->getBond(pos);
						if (hbond.getBoundAtom(*c_atom)->getName() == name)
						{
							x_atom = hbond.getBoundAtom(*c_atom);
							break;
						}
					}
					for (Position pos = 0; (x_atom == 0) && (pos < o_atom->countBonds()); pos++)
					{
						const Bond& hbond = *o_atom->getBond(pos);
						if (hbond.getBoundAtom(*o_atom)->getName() == name)
						{
							x_atom = hbond.getBoundAtom(*o_atom);
							break;
						}
					}
					// ??? What happens if x_atom is not set.

					if ((c_atom == 0) || (o_atom == 0) || (x_atom == 0))	
					{
						Log.error() << "Could not set all atoms in ASP! c_atom = " << c_atom << "  o_atom = " << o_atom << "  x_atom = " << x_atom << endl;
						Log.error() << "c_atom->getName() = "<< c_atom->getFullName() << "    o_atom->getName() = " << o_atom->getFullName() << endl;
						continue;
					}
					else 
					{
						const Vector3& c_pos = c_atom->getPosition();
						const Vector3& o_pos = o_atom->getPosition();
						const Vector3& x_pos = x_atom->getPosition();

						// Construct an orthogonal coordinate system.
						Vector3 vz(o_pos - c_pos);
						vz.normalize();
						Vector3 vy(vz % (x_pos - c_pos));
						vy.normalize();
						Vector3 vx (vz % vy);
						vx.normalize();
						const Vector3 cen(c_pos + (vz * 1.1));
						const Vector3 v1((*proton_it)->getPosition() - cen);
						const Vector3 v2(v1 % vy);
						const Vector3 v3(v2 % vx);

						const float distance = v1.getLength();
						const float stheta = v2.getLength() / (v1.getLength() * vy.getLength());
						const float sgamma = v3.getLength() / (v2.getLength() * vx.getLength());
						float calc1;
						float calc2;
						if ((*proton_it)->getName() == "H")
						{
							calc1 = dXN1 * ((3.0 * stheta * stheta) - 2.0);
							calc2 = dXN2 * (1.0 - (3.0 * stheta * stheta * sgamma * sgamma));
						}
						else
						{
							calc1 = dX1 * ((3.0 * stheta * stheta) - 2.0);
							calc2 = dX2 * (1.0 - (3.0 * stheta * stheta * sgamma * sgamma));
						}

						float shift = (calc1 + calc2) / (3.0 * distance * distance * distance);
						// ?????
						// check whether effector and nucleus are in the same chain
						if ((ignore_other_chain_) && ((*proton_it)->getResidue() != 0) && (c_atom->getResidue() != 0))
						{
							if ((*proton_it)->getResidue()->getChain() == c_atom->getResidue()->getChain())
							{
								shift = 0.0;
							}
						}
						total_shift += shift;	
					}
				}
			}

			for (eff_iter = eff_list_2_.begin(); eff_iter != eff_list_2_.end(); ++eff_iter)
			{
				const Bond* bond = *eff_iter;
				const Atom* c_atom = bond->getFirstAtom();
				const Atom* n_atom = bond->getSecondAtom();
				
				if (c_atom->getElement() != PTE[Element::C])
				{
					n_atom = bond->getFirstAtom();
					c_atom = bond->getSecondAtom();
				}
				const Atom* o_atom = 0;

				// Skip the H atom of this residue.
				if ((*proton_it)->getName() == "H" && (*proton_it)->getFragment() == n_atom->getFragment())
				{
					continue;
				}

				for (Position pos = 0; pos < c_atom->countBonds(); pos++)
				{
					const Bond& hbond = *c_atom->getBond(pos);
					if (hbond.getBoundAtom(*c_atom)->getName() == "O")
					{
						o_atom = hbond.getBoundAtom(*c_atom);
						break;
					}
				}
				
				if (o_atom != 0)
				{
					Vector3 c_pos = c_atom->getPosition();
					Vector3 o_pos = o_atom->getPosition();
					Vector3 n_pos = n_atom->getPosition();

					// baue rechtwinkliges Koordinatensystem auf
					Vector3 vz = n_pos - c_pos;
					const float vz_scalar = vz.getLength();
					vz.normalize();
					Vector3 vy = vz % (o_pos - c_pos);
					vy.normalize();
					Vector3 vx = vz % vy;
					vx.normalize();
					const Vector3 cen = c_pos + (vz * (0.85 * vz_scalar));
					const Vector3 v1 = (*proton_it)->getPosition() - cen;
					const Vector3 v2 = v1 % vy;
					const Vector3 v3 = v2 % vx;

					const float distance = v1.getLength();
					const float stheta = v2.getLength() / (v1.getLength() * vy.getLength());
					const float sgamma = v3.getLength() / (v2.getLength() * vx.getLength());
					float calc1, calc2;
					if ((*proton_it)->getName() == "H")
					{
						calc1 = ndXN1 * ((3.0 * stheta * stheta) - 2.0);
						calc2 = ndXN2 * (1.0 - (3.0 * stheta * stheta * sgamma * sgamma));
					}
					else
					{
						calc1 = ndX1 * ((3.0 * stheta * stheta) - 2.0);
						calc2 = ndX2 * (1.0 - (3.0 * stheta * stheta * sgamma * sgamma));
					}

					// ?????
					float shift = (calc1 + calc2) / (3.0 * distance * distance * distance);	
					// check whether effector and nucleus are in the same chain
					if (ignore_other_chain_ && ((*proton_it)->getResidue() != 0) && (c_atom->getResidue() != 0))
					{
						if ((*proton_it)->getResidue()->getChain() == c_atom->getResidue()->getChain())
						{
							shift = 0.0;
						}
					}
					total_shift += shift;
				}
				else 
				{
					Log.error() << "O atom not found for " << c_atom->getFullName() << "-" << n_atom->getFullName() << endl;
				}
			}
			float shift = (*proton_it)->getProperty(ShiftModule::PROPERTY__SHIFT).getFloat();
			shift -= total_shift;
			(const_cast<Atom*>(*proton_it))->setProperty(ShiftModule::PROPERTY__SHIFT, shift);
			(const_cast<Atom*>(*proton_it))->setProperty(PROPERTY__ANISOTROPY_SHIFT, -total_shift);
		}

		return true;
	}

	Processor::Result AnisotropyShiftProcessor::operator () (Composite& composite)
	{
		// Collect all effector bonds(C=O) and store them in eff_list_
		// All protons are collected in proton_list_.
        if (!RTTI::isKindOf<Atom>(&composite))
		{
			return Processor::CONTINUE;
		}

		const Atom* patom = RTTI::castTo<Atom>(composite);

		if (patom->getElement() == PTE[Element::H])
		{
			proton_list_.push_back(patom);
			return Processor::CONTINUE;
		}

		if (patom->getElement() != PTE[Element::C])
		{
			return Processor::CONTINUE;
		}

		// Figure out whether we found a backbon C atom in a carbonyl group.
		if (patom->getName() == "C" && patom->isBound())
		{
			bool foundN = false;
			bool foundO = false;
			Position bondN = 0;

			// Iterate over all bonds and search for a double bond to an oxygen.
			for (Position pos = 0; pos < patom->countBonds(); pos++)
			{
				const Bond* bond = patom->getBond(pos);
				if ((bond->getBoundAtom(*patom)->getName()) == "N")
				{
					foundN = true;
					bondN  = pos;
				}
				if ((bond->getBoundAtom(*patom)->getName()) == "O")
				{
					foundO = true;
					eff_list_.push_back(bond);
				}
			}
			if (foundN && foundO)
			{
				eff_list_2_.push_back(patom->getBond(bondN));
			}
			return Processor::CONTINUE;
		}

		// Search for side-chain effectors in ASP ASN GLU GLN.
		const String& residue_name = patom->getFragment()->getName();

		// Search for ASP and ASN, look for ASP/ASN:CG=OD1
		if ((residue_name == "ASP" || residue_name == "ASN") &&
				 patom->getName() == "CG" && patom->isBound()	)
		{
			// Walk over all bonds and search for a double bond to an oxygen.
			for (Position pos = 0; pos < patom->countBonds(); pos++)
			{
				const Bond* bond = patom->getBond(pos);
				if (bond->getBoundAtom(*patom)->getElement() == PTE[Element::O] &&
						bond->getBoundAtom(*patom)->getName() == "OD1")
				{
					eff_list_.push_back(bond);
				}
			}
			return Processor::CONTINUE;
		}

		// Search for GLU/GLN:CD=OE1.
		if ((residue_name == "GLU" || residue_name == "GLN") &&
				 patom->getName() == "CD" && patom->isBound()	)
		{
			// Walk over all bonds and search for a double bond to an oxygen.
			for (Position pos = 0; pos < patom->countBonds(); pos++)
			{
				const Bond* bond = patom->getBond(pos);
				if (bond->getBoundAtom(*patom)->getElement() == PTE[Element::O] &&
						bond->getBoundAtom(*patom)->getName() == "OE1"  )
				{
					eff_list_.push_back(bond);
				}
			}
		}
		return Processor::CONTINUE;
	}

}	// namespace BALL