1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/NMR/johnsonBoveyShiftProcessor.h>
#include <BALL/KERNEL/atomIterator.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/SYSTEM/path.h>
#include <list>
using namespace std;
namespace BALL
{
const char* JohnsonBoveyShiftProcessor::PROPERTY__RING_CURRENT_SHIFT = "RingCurrentShift[JB]";
const int RING_MAX_ATOMS = 6;
BALL_INLINE
double SQR(double x)
{
return (x*x);
}
bool JohnsonBoveyShiftProcessor::Ring::operator == (const Ring& ring) const
{
return radius == ring.radius &&
intensity == ring.intensity &&
electrons == ring.electrons &&
atom_names == ring.atom_names;
}
double JohnsonBoveyShiftProcessor::carlsonEllipticalIntegral1_(double x,double y,double z)
{
// Lokale Konstanten Definitionen :
const double ERRTOL = 0.08;
const double TINY = 1.5e-38;
const double BIG = 3.0e37;
const double THIRD = (1.0/3.0);
const double C1 = (1.0/24.0);
const double C2 = 0.1;
const double C3 = (3.0/44.0);
const double C4 = (1.0/14.0);
/*
Computes Carlson's elliptic integral of the first kind, Rf(x,y,z). x,y,z must be nonnegative, and at most
one can be zero.Tiny must be at least 5 times the machine underflow limit, Big must be at most on fit with the
machine overflow limit.
*/
double alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt;
if (std::min(std::min(x, y), z) < 0.0 || std::min(std::min(x + y, x + z), y + z) < TINY || std::max(std::max(x, y), z) > BIG)
{
Log.error() << "JohnsonBoveyShiftProcessor::rf : argument error" << endl;
return 0;
}
else
{
xt=x;
yt=y;
zt=z;
do
{
sqrtx=sqrt(xt);
sqrty=sqrt(yt);
sqrtz=sqrt(zt);
alamb=sqrtx*(sqrty + sqrtz) + sqrty*sqrtz;
xt=0.25*(xt + alamb);
yt=0.25*(yt + alamb);
zt=0.25*(zt + alamb);
ave=THIRD*(xt + yt + zt);
delx=(ave-xt)/ave;
dely=(ave-yt)/ave;
delz=(ave-zt)/ave;
}
while (std::max(std::max(fabs(delx), fabs(dely)), fabs(delz)) > ERRTOL);
e2=delx*dely-delz*delz;
e3=delx*dely*delz;
return (1.0 + (C1*e2-C2-C3*e3)*e2 + C4*e3)/sqrt(ave);
}
}
double JohnsonBoveyShiftProcessor::carlsonEllipticalIntegral2_(double x,double y,double z)
{
//Lokale Konstanten Definitionen :
const double ERRTOL=0.05;
const double TINY=1.0e-25;
const double BIG=4.5e21;
const double C1=(3.0/14.0);
const double C2=(1.0/6.0);
const double C3=(9.0/22.0);
const double C4=(3.0/26.0);
const double C5=(0.25*C3);
const double C6=(1.5*C4);
/*
Computes Carlson's ellipic integral of the second kind, Rd(x,y,z). x,y,z must be nonnegative, and at most
one can be zero. z must be positive. TINY must be at least twice the negative 2/3 power of the machine
overflow limit. BIG must be at mos 0.1xERRTOL time the negative 2/3 power of the machin underflow limit
*/
double alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt;
if (std::min(x, y) < 0.0 || std::min(x + y, z) < TINY || std::max(std::max(x, y), z) > BIG)
{
Log.error() << "JohnsonBoveyShiftProcessor::rd : argument error" << endl;
return 0;
}
else
{
xt=x;
yt=y;
zt=z;
sum=0.0;
fac=1.0;
do
{
sqrtx=sqrt(xt);
sqrty=sqrt(yt);
sqrtz=sqrt(zt);
alamb=sqrtx*(sqrty + sqrtz) + sqrty*sqrtz;
sum +=fac/(sqrtz*(zt + alamb));
fac=0.25*fac;
xt=0.25*(xt + alamb);
yt=0.25*(yt + alamb);
zt=0.25*(zt + alamb);
ave=0.2*(xt + yt + 3.0*zt);
delx=(ave-xt)/ave;
dely=(ave-yt)/ave;
delz=(ave-zt)/ave;
}
while (std::max(std::max(fabs(delx), fabs(dely)), fabs(delz)) > ERRTOL);
ea=delx*dely;
eb=delz*delz;
ec=ea-eb;
ed=ea-6.0*eb;
ee=ed + ec + ec;
return 3.0*sum + fac*(1.0 + ed*(-C1 + C5*ed-C6*delz*ee) + delz*(C2*ee + delz*(-C3*ec + delz*C4*ea)))/(ave*sqrt(ave));
}
}
double JohnsonBoveyShiftProcessor::legendreEllipticalIntegral1_(double phi,double ak)
{
/*
Legendre elliptic integral of the 1st kind f(phi,k) , evaluated using Carlson's function rf.
The argument ranges are 0 <=phi <=PI/2 , 0 <=k*sin(phi) <=1.
*/
double s;
s=sin(phi);
return s*carlsonEllipticalIntegral1_(SQR(cos(phi)),(1.0-s*ak)*(1.0 + s*ak),1.0);
}
double JohnsonBoveyShiftProcessor::legendreEllipticalIntegral2_(double phi,double ak)
{
/*
Legendre elliptic integral of the 2nd kind E(phi,k). evaluated usin Carlson's functions Rd and Rf.
The argument ranges are 0 <=phi <=PI/2, o <=ksin(phi) <=1.
*/
double cc,q,s;
s=sin(phi);
cc=SQR(cos(phi));
q=(1.0-s*ak)*(1.0 + s*ak);
return s*(carlsonEllipticalIntegral1_(cc,q,1.0)-(SQR(s*ak))*carlsonEllipticalIntegral2_(cc,q,1.0)/3.0);
}
JohnsonBoveyShiftProcessor::JohnsonBoveyShiftProcessor()
: proton_list_(),
atom_list_(),
aromat_list_(),
rings_(),
residues_with_rings_(),
expressions_()
{
}
JohnsonBoveyShiftProcessor::~JohnsonBoveyShiftProcessor()
{
}
void JohnsonBoveyShiftProcessor::init()
{
// if anything fails, valid_ will be false
valid_ = false;
// if we have no parameters, abort
if (parameters_ == 0)
{
return;
}
// einlesen der Ringe und Aufbau der Hashtabellen
ParameterSection parameter_section;
parameter_section.extractSection(*parameters_, "JB-Rings");
Size number_of_keys = parameter_section.getNumberOfKeys();
String ring_entry;
String residue_name;
String name_list;
// make sure the table has all required entries
if (!parameter_section.hasVariable("residue_name")
|| !parameter_section.hasVariable("radius")
|| !parameter_section.hasVariable("electrons")
|| !parameter_section.hasVariable("name_list")
|| !parameter_section.hasVariable("intensity"))
{
Log.error() << "JohnsonBoveyShiftProcessor::init: parameter section "
<< parameter_section.getSectionName() << " does not contain "
<< "all required variables (residue_name, radius, electrons, name_list, intensity)"
<< endl;
return;
}
Position residue_name_column = parameter_section.getColumnIndex("residue_name");
Position radius_column = parameter_section.getColumnIndex("radius");
Position electrons_column = parameter_section.getColumnIndex("electrons");
Position name_list_column = parameter_section.getColumnIndex("name_list");
Position intensity_column = parameter_section.getColumnIndex("intensity");
for (Position key = 0; key < number_of_keys; key++)
{
Ring new_ring;
residue_name = parameter_section.getValue(key, residue_name_column);
Size number;
if (residues_with_rings_.has(residue_name))
{
number = residues_with_rings_[residue_name] + 1;
}
else
{
number = 1;
}
residues_with_rings_[residue_name] = number;
ring_entry = residue_name;
ring_entry.append(String(number));
try
{
new_ring.radius = parameter_section.getValue(key, radius_column).toFloat();
new_ring.electrons = parameter_section.getValue(key, electrons_column).toUnsignedInt();
new_ring.intensity = parameter_section.getValue(key, intensity_column).toFloat();
name_list = parameter_section.getValue(key, name_list_column);
}
catch (Exception::InvalidFormat&)
{
Log.error() << "JohnsonBoveyShiftProcessor::init: error interpreting parameter line with key "
<< key << std::endl;
return;
}
name_list.split(new_ring.atom_names, ",");
rings_.insert(make_pair(ring_entry, new_ring));
}
// einlesen der shift Atome und liste von expressions aufbauen
parameter_section.extractSection(*parameters_,"JB-ShiftAtoms");
number_of_keys = parameter_section.getNumberOfKeys();
expressions_.clear();
Position description_column = parameter_section.getColumnIndex("description");
for (Position pos = 0; pos < number_of_keys; pos++)
{
expressions_.push_back(parameter_section.getValue(pos, description_column));
}
// initialization successful: the module is valid
valid_ = true;
}
bool JohnsonBoveyShiftProcessor::start()
{
if (!isValid())
{
return false;
}
// clear all temporary data structures
proton_list_.clear();
atom_list_.clear();
aromat_list_.clear();
return true;
}
bool JohnsonBoveyShiftProcessor::finish()
{
// check for validity of the object
if (!isValid())
{
return false;
}
std::vector<String> ring_atoms;
Position vcounter;
double p, z, lambda, k, e, hshift;
Vector3 left, center, right;
Vector3 vector_field[RING_MAX_ATOMS];
// iterate over all nuclei
for (list<Atom*>::iterator atom_iter = atom_list_.begin();
atom_iter != atom_list_.end(); ++atom_iter)
{
// iterate over all aromatic rings and add their contributions
// to the curent shift of the nucleus
double shift = 0;
for (std::list<Residue*>::iterator arom_iter = aromat_list_.begin();
arom_iter != aromat_list_.end(); ++arom_iter)
{
Residue* residue = *arom_iter;
// ignore the ring contribution in the aromatic residue itself
// (except for H and HA atoms)
// ?????: this should be parameterizable as well!
if (((*atom_iter)->getResidue() == residue)
&& ((*atom_iter)->getName() != "H")
&& ((*atom_iter)->getName() != "HA"))
{
continue;
}
String residue_name = residue->getName();
Size number_of_rings = residues_with_rings_[residue_name];
for (Position pos = 1; pos <= number_of_rings; pos++)
{
vcounter = 0;
String ring_name = residue_name;
ring_name.append(String(pos));
Ring& ring = rings_[ring_name];
double intensity = ring.intensity;
double radius = ring.radius;
ring_atoms = ring.atom_names;
for (Position counter2 = 0; counter2 < ring_atoms.size(); counter2++)
{
for (AtomIterator atomiterator = residue->beginAtom();
+atomiterator; ++atomiterator)
{
if (atomiterator->getName() == ring_atoms[counter2])
{
vector_field[vcounter] = atomiterator->getPosition();
vcounter++;
break; // found
}
}
}
if (vcounter != ring_atoms.size())
{
Log.warn() << "JohnsonBoveyShiftProcessor::finish: problem: could not identify all ring atoms for "
<< residue->getName() << residue->getID() << endl;
}
// das VektorFeld ist bestimmt und vcounter zeigt hinter den letzten gueltigen vector
// determine the center of the ring
Vector3 center;
for (Position counter = 0; counter < vcounter; counter++)
{
center += vector_field[counter];
}
center /= (double)vcounter;
// determine the vector perpendicular to the
// ring plane
Vector3 normal;
for (Position counter = 0; counter < vcounter; counter++)
{
left = vector_field[(counter + 0) % (vcounter)];
center = vector_field[(counter + 1) % (vcounter)];
right = vector_field[(counter + 2) % (vcounter)];
normal += (center - left) % (center - right);
}
// normalize the normal vector (if possible)
if (Maths::isZero(normal.getSquareLength()))
{
Log.warn() << "Problem: cannot normalize vector: "<< normal << endl;
}
else
{
normal.normalize();
// determine the secondary shift contribution of this ring
const Vector3& atom_position = (*atom_iter)->getPosition();
// calculate p und z;
z = normal * atom_position - normal * center;
lambda = normal * (atom_position - center) / (normal * normal);
p = ((center + (float)lambda * normal) - atom_position).getLength();
p *= 1e-10;
z *= 1e-10;
p /= radius;
z /= radius;
// calculate the geometry factor: two elliptical integrals
using namespace Constants;
double value = sqrt(4 * p / (SQR(1 + p) + SQR(z)));
k = legendreEllipticalIntegral1_(PI / 2, value);
e = legendreEllipticalIntegral2_(PI / 2, value);
// p und z sind berechnet, berechne nun die Integrale
hshift = VACUUM_PERMEABILITY * (double)ring.electrons * ELEMENTARY_CHARGE * ELEMENTARY_CHARGE;
hshift /= 4 * PI * 6 * PI * ELECTRON_MASS * radius;
hshift *= (1 / sqrt( ((1 + p) * (1 + p)) + (z * z)));
hshift *= (k + ((1 - p * p - z * z) / ((1 - p) * (1 - p) + z * z)) *e );
hshift *= intensity;
shift += hshift;
vcounter = 0;
}
} // Lop over all rings of a residue
} // Loop over all rings
hshift = shift * 1e6;
shift = ((*atom_iter)->getProperty(ShiftModule::PROPERTY__SHIFT)).getFloat();
shift += hshift;
(*atom_iter)->setProperty(ShiftModule::PROPERTY__SHIFT, (float)shift);
(*atom_iter)->setProperty(PROPERTY__RING_CURRENT_SHIFT, (float)hshift);
}
// Loop over all atoms
return true;
}
Processor::Result JohnsonBoveyShiftProcessor::operator () (Composite& composite)
{
// ueberpruefe fuer jedes Residue ob es in residues_with_rings ist und fuege es in die Liste aromat_list_ ein.
// ueberpruefe fuer jedes Atom die Liste der Expressions und falls eine wahr ist fuege das Atom in die Liste ein.
if (RTTI::isKindOf<Residue>(&composite)) // erganze aromat_list_ um aromatische Residues
{
Residue* residue = RTTI::castTo<Residue>(composite);
if (residues_with_rings_.has(residue->getName()))
{
aromat_list_.push_back(residue);
}
}
// Liste um Aromaten erweitert
if (RTTI::isKindOf<Atom>(&composite))
{
Atom* atom_ptr = RTTI::castTo<Atom>(composite);
for (Size counter = 0; counter < expressions_.size(); counter++)
{
if (expressions_[counter](*atom_ptr))
{
atom_list_.push_back(atom_ptr);
break;
}
}
}
return Processor::CONTINUE;
}
} // namespace BALL
|