File: shiftModel2D.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (411 lines) | stat: -rw-r--r-- 10,630 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/NMR/shiftModel2D.h>
#include <BALL/NMR/shiftModel.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/KERNEL/bond.h>

using namespace std;

namespace BALL
{	
	ShiftModel2D::ShiftModel2D() 
		:	ShiftModule(),
			peaks_(),
			origin_(),
			dimension_(),
			spacing_(),	
			type_(),
			parameters_(),
			system_(NULL),
			valid_(false),
			compute_shifts_(true)
	{// ?? should we do this? 
			//	registerStandardModules_();
	}

	ShiftModel2D::ShiftModel2D(const String& filename, SPECTRUM_TYPE st, bool compute_shifts) 
		:	ShiftModule(),
			peaks_(),
			origin_(),
			dimension_(),
			spacing_(),
			type_(st),
			parameters_(filename),
			system_(NULL),
			valid_(false),
			compute_shifts_(compute_shifts)
	{
		//?? should we do this? 
		//registerStandardModules_();
		init_();
	}

	ShiftModel2D::ShiftModel2D(const String& filename,SPECTRUM_TYPE st, Vector2 origin, Vector2 dimension, Vector2 spacing, bool compute_shifts) 
		:	ShiftModule(),
			peaks_(),
			origin_(origin),
			dimension_(dimension),
			spacing_(spacing),
			type_(st),
			parameters_(filename),
			system_(NULL),
			valid_(false),
			compute_shifts_(compute_shifts)
	{
		//?? should we do this? 
		//registerStandardModules_();
		init_();
	}

	ShiftModel2D::ShiftModel2D(const ShiftModel2D& model)
		:	ShiftModule(),
			peaks_(model.peaks_),
			origin_(model.origin_),
			dimension_(model.dimension_),
			spacing_(model.spacing_),
			type_(model.type_),
			parameters_(model.parameters_),
			system_(NULL),
			valid_(false),
			compute_shifts_(model.compute_shifts_)
	{
		init_();
	}
	
	ShiftModel2D::~ShiftModel2D()
	{
		clear();
	}
	
			
	void ShiftModel2D::clear()
	{
		// model is invalid
		valid_ = false;

		// clear parameters
		parameters_.clear();
		
		peaks_.clear();
		system_ = NULL;
		
	}
	
	bool  ShiftModel2D::init_()
	{
		valid_ = true;

		// return the current state
		return valid_;

	}

	void ShiftModel2D::setFilename(const String& filename)
	{
		// set the parameter filename 
		parameters_.setFilename(filename);

		// ...and initialize!
		init_();
	}
	
	bool ShiftModel2D::isValid() const
	{
		return valid_;
	}


	bool ShiftModel2D::start()
	{	
		peaks_.clear();
		return true;
	}
	
	bool ShiftModel2D::finish()
	{
		if (!isValid())
		{
			return false;
		}
	
		if (!system_)
		{
			Log.info() << "No valid system found!" << std::endl;
			return false;
		}
		
		// compute the shift model if necessary
		if (compute_shifts_)
		{
			BALL::ShiftModel sm(parameters_.getFilename());
			system_->apply(sm);
		}
		
		if (type_== HSQC_NH  ||  type_ ==  HSQC_CH)
		{
			Element element_type1 = Element::UNKNOWN;
			Element element_type2 = Element::UNKNOWN;

			// Peter Bayer proposed as peak width  
			// for N--H 10hz/15Hz and
			// for C--H  5Hz/15Hz

			// peakwidth is meassured in ppm, since
			// experiments were done in Hz, we convert the values 
			// according to the formular
			// 
			// 		offset [Hz] = offset[ppm] * basic frequency
			//
			// for our prediction we assume a basic frequency of 700 MHz
			float peakwidth_proton = 0.0;
			float	peakwidth_atom = 0.0;

			if (type_ == HSQC_NH)
			{
				element_type1 = PTE[Element::H];
				 peakwidth_proton = 0.02142; // AKD 11.7.07
				//peakwidth_proton = 0.;
				element_type2 = PTE[Element::N];
				peakwidth_atom = 0.01428;  //AKD 11.07.07
				//peakwidth_atom = 0.;
			}
			else if (type_ == HSQC_CH)
			{
				element_type1 = PTE[Element::H];
				peakwidth_proton = 0.02142; //AKD 11.7.07
				//peakwidth_proton = 0.0;
				element_type2 = PTE[Element::C];
				peakwidth_atom = 0.00714; //AKD 11.7.07
				//peakwidth_atom = 0.0;
			}

			if (element_type1 == Element::UNKNOWN  || element_type2 == Element::UNKNOWN)
				return true;

			// for debugging
			int counter_element1 = 0;
			int counter_element2 = 0;
			int counter_peaks = 0;

// test ausgabe			
std::ofstream outfile("/home/HPL/anne/DEVELOP/NMR/2DSPECTRA/1z0r/1z0r.peaks");

			//look for valid atom pairs
			for (BALL::ResidueIterator r_it = system_->beginResidue(); +r_it; ++r_it)
			{	
				Atom* proton = NULL;
				Atom* atom = NULL;
			
				// do we have atoms in this residue? 
				for (BALL::AtomIterator at_it = r_it->beginAtom(); +at_it; ++at_it)
				{
					// for debugging
					if (at_it->getElement() == PTE[Element::H])
					{
						// is it bound to a backbone C or N??
						Atom::BondIterator b_it = at_it->beginBond();
						for (; +b_it; ++b_it)
						{	
							if (    b_it->getType()!=(Bond::TYPE__HYDROGEN) 
									&& (b_it->getPartner(*at_it)->getName()=="N" || b_it->getPartner(*at_it)->getElement() == PTE[Element::C]))
							{
								counter_element1++;
								proton = &(*at_it);
								atom = b_it->getPartner(*at_it);
							}
						}
					}
					// end debugging
					
					// at the moment we just allow backbone's N
					if ( (type_ == HSQC_NH) && (at_it->getName() == "N" ))
					{	
						atom = &(*at_it);
						// is it bound to a proton? 
						Atom::BondIterator b_it = atom->beginBond();
						for (; +b_it; ++b_it)
						{
							if (  b_it->getType()!=(Bond::TYPE__HYDROGEN)  && b_it->getPartner(*atom)->getElement() == element_type1)
							{
								proton = b_it->getPartner(*atom);
								createPeak_(proton, atom, peakwidth_proton, peakwidth_atom);
			// test ausgabe
			outfile << atom->getResidue()->getID() << " " << atom->getFullName() << " "  << atom->getTypeName() << " "
							<< proton->getFullName() << " " <<  proton->getTypeName() << " " 
							<< proton->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat() << "  "
							<< atom->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat() << std::endl;

								counter_peaks++;
							}
						}
						counter_element2++;
					}
					else if ( (type_ == HSQC_CH) && ( at_it->getElement() == PTE[Element::C]))
					{
						atom = &(*at_it);
						// is it bound to a proton? 
						Atom::BondIterator b_it = atom->beginBond();
						for (; +b_it; ++b_it)
						{
							if (  b_it->getType()!=(Bond::TYPE__HYDROGEN)  && b_it->getPartner(*atom)->getElement() == element_type1)
							{
								proton = b_it->getPartner(*atom);
								createPeak_(proton, atom, peakwidth_proton, peakwidth_atom);
	// test ausgabe
	outfile << atom->getResidue()->getID() << " " << atom->getFullName() << " "  << atom->getTypeName() << " "
					<< proton->getFullName() << " " <<  proton->getTypeName() << " " 
					<< proton->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat() << "  "
					<< atom->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat() << std::endl;

								counter_peaks++;
							}
	
							counter_element2++;
						}
					}										
				}
			}
	//testausgabe
	outfile.close();
			
			//debugging
			std::cout << "Number of peaks : " << counter_peaks << "  Number of N's: " << counter_element2 << "  Number of H's: " << counter_element1 << std::endl;

		} /*
		else 
		{
			Element element_type1 = Element::UNKNOWN;
			Element element_type2 = Element::UNKNOWN;

			// Peter Bayer proposed as peak width  
			// for N--H 10hz/15Hz and
			// for C--H  5Hz/15Hz

			// peakwidth is meassured in ppm, since
			// experiments were done in Hz, we convert the values 
			// according to the formular
			// 
			// 		offset [Hz] = offset[ppm] * basic frequency
			//
			// for our prediction we assume a basic frequency of 700 MHz
			float peakwidth_atom1 = 0.0;
			float	peakwidth_atom2 = 0.0;
			
			if (type_ == HSQC_NH)
			{
				element_type1 = PTE[Element::H];
				peakwidth_atom1 = 0.02142;
				element_type2 = PTE[Element::N];
				peakwidth_atom2 = 0.01428;
			}
			else if (type_ == HSQC_CH)
			{
				element_type1 = PTE[Element::H];
				peakwidth_atom1 = 0.02142;
				element_type2 = PTE[Element::C];
				peakwidth_atom2 = 0.00714;
			}
		
			if (element_type1 == Element::UNKNOWN  || element_type2 == Element::UNKNOWN)
				return true;

	
			//look for valid atom pairs
			for (BALL::ResidueIterator r_it = system_->beginResidue(); +r_it; ++r_it)
			{	
				Atom* atom1 = NULL;
				Atom* atom2 = NULL;

				// do we have atom1 and atom2 in this residue? 
				for (BALL::AtomIterator at_it = r_it->beginAtom(); +at_it; ++at_it)
				{
					if (at_it->getElement() == element_type1)
					{
						atom1 = &(*at_it);
					}

					if (at_it->getElement() == element_type2)
					{
						atom2 = &(*at_it);
					}

					if (atom1 && atom2 )  
					{
						createPeak_(atom1, atom2,	peakwidth_atom1, 	peakwidth_atom2 );
					}
				}
			}
		}*/
		return true;
	}

	void ShiftModel2D::createPeak_(Atom* atom1, Atom* atom2, float peakwidth_atom1, float peakwidth_atom2)
	{
//std::cout << "Atoms: atom1:" << atom1->getFullName()<< " -- atom2: " << atom2->getFullName() << std::endl; 
		// we have, get the shift
		float shift1 = atom1->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat();
		float shift2 = atom2->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat();
		
/*		//do we have to exlcude Prolines?
		if (type_ == HSQC_NH && atom2->getResidue()->getName() == "PRO" && atom2->getName() == "N")
		{ 
 			shift2 = 0.;
		} */
		
		//store the shift in the peak list
		Peak2D peak;
		Vector2 pos(shift1, shift2); 
		peak.setPosition(pos);

	//std::cout << " halo " << atom2->getName() << " " << atom2->getResidue()->getName() << ": " <<  shift2  << "     "<< atom1->getName() << " " << atom1->getResidue()->getName() << ": " <<  shift1  << std::endl;
		peak.setWidth(Vector2(peakwidth_atom1,peakwidth_atom2));
		peak.setIntensity(1.);
		//setAtom();
		peaks_.push_back(peak);
	}

	
	Processor::Result ShiftModel2D::operator () (Composite& composite)
	{
		Processor::Result result = Processor::CONTINUE;

                if (!system_ && RTTI::isKindOf<Atom>(&composite))
		{
			Atom* atom = dynamic_cast<Atom*>(&composite);
                        if  (RTTI::isKindOf<System>(&atom->getRoot()))
			{	
				system_ = dynamic_cast<System*>(&(atom->getRoot()));
			}
		}
		return result;
	}

	void ShiftModel2D::operator >> (Spectrum2D& spectrum)
  {
     // this overwrites the parameter
     spectrum = Spectrum2D(peaks_, origin_, dimension_, spacing_);
  }
			

	std::ostream& operator << (std::ostream& os, const BALL::ShiftModel2D& shiftmodel)
	{
		// output the data in gnuplottable format :-)
		// e.g. ShiftModel sm; ...; File f("plot.dat", std::ios::out); f << sm;
		// gnuplot -persist plot.dat
		const std::vector<Peak2D>& peaks = shiftmodel.getPeaks();

		Size length = peaks.size();
		for (Size i = 0; i < length; i++)
		{
				RegularData2D::CoordinateType pos = peaks[i].getPosition();

				os << pos.x << " " << pos.y << " " << peaks[i].getIntensity() << std::endl;	
		}

		return os;
	}
}