1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/Model.h>
#include <BALL/QSAR/kernelModel.h>
#include <BALL/QSAR/registry.h>
using namespace std;
namespace BALL
{
namespace QSAR
{
Model::Model(const QSARData& q)
{
data = &q;
default_no_opt_steps_ = 30;
}
Model::~Model()
{
}
void Model::copyData(const Model& m)
{
descriptor_matrix_ = m.descriptor_matrix_;
substance_names_ = m.substance_names_;
descriptor_names_ = m.descriptor_names_;
descriptor_transformations_ = m.descriptor_transformations_;
y_transformations_ = m.y_transformations_;
Y_ = m.Y_;
descriptor_IDs_ = m.descriptor_IDs_;
}
void Model::operator = (const Model& m)
{
if (type_ != m.type_)
{
String message = "Wrong usage of ' = '-operator. A copy of a "+m.type_+" model is no "+type_+" model!";
throw Exception::InconsistentUsage(__FILE__, __LINE__, message.c_str());
}
descriptor_names_ = m.descriptor_names_;
descriptor_transformations_ = m.descriptor_transformations_;
y_transformations_ = m.y_transformations_;
descriptor_IDs_ = m.descriptor_IDs_;
vector<double> v = m.getParameters();
setParameters(v);
model_val->selectStat(m.model_val->getStat()); // set validation statistic
}
const string* Model::getType()
{
return &((string&)type_);
}
void Model::copyDescriptorIDs(const Model& m)
{
descriptor_IDs_ = m.descriptor_IDs_;
}
void Model::deleteDescriptorIDs()
{
std::multiset<unsigned int> s;
descriptor_IDs_ = s;
}
void Model::readTrainingData()
{
if (data->descriptor_matrix_.size() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be fetched from input-files by QSARData before a model can use this data as training input!");
}
bool fs = 0; // has feature selection being done?
if (!descriptor_IDs_.empty())
{
fs = 1;
}
std::multiset<unsigned int>::iterator it = descriptor_IDs_.begin();
int col = data->descriptor_matrix_.size();
if (fs)
{
col = descriptor_IDs_.size();
}
int lines = data->descriptor_matrix_[0].size();
descriptor_matrix_.resize(lines, col);
substance_names_ = data->substance_names_;
descriptor_names_.resize(col);
Y_.resize(lines, data->Y_.size());
bool transform = 0; bool y_transform = 0;
if (data->descriptor_transformations_.size() != 0)
{
transform = 1;
descriptor_transformations_.resize(2, col);
if (data->y_transformations_.size() != 0)
{
y_transformations_.resize(2, data->Y_.size());
y_transform = 1;
}
}
bool xlabels = 0;
if (data->column_names_.size() != 0)
{
xlabels = 1;
}
// copy activity values of all substances and transformation of each activity column
for (unsigned int i = 0; i < data->Y_.size(); i++)
{
for (unsigned int j = 0; j < data->Y_[0].size(); j++)
{
Y_(j, i) = data->Y_[i][j];
}
if (y_transform)
{
y_transformations_(0, i) = data->y_transformations_[i][0];
y_transformations_(1, i) = data->y_transformations_[i][1];
}
}
int t = 0; // index in line of training data
it = descriptor_IDs_.begin();
// copy selected descriptors, their names and the information about their transformations (mean and stddev of each descriptor)
for (unsigned int j = 0; j < data->descriptor_matrix_.size() && (!fs || it != descriptor_IDs_.end()); j++)
{
// set only those columns that belong to selected descriptors
if ( (fs && *it == j) || !fs )
{
if (xlabels)
{
descriptor_names_[t] = data->column_names_[j];
}
if (transform)
{
descriptor_transformations_(0, t) = data->descriptor_transformations_[j][0];
descriptor_transformations_(1, t) = data->descriptor_transformations_[j][1];
}
// set each cell of the current column j
for (int i = 0; i < lines; i++)
{
//cout<<"trying to write to cell "<<i+1<<", "<<t+1<<" from cell "<<j<<", "<<i<<endl;
descriptor_matrix_(i, t) = data->descriptor_matrix_[j][i];
}
t++;
if (fs)
{
it++;
}
}
}
}
void Model::readDescriptorInformation()
{
bool fs = 0; // has feature selection being done?
if (!descriptor_IDs_.empty())
{
fs = 1;
}
int col = data->descriptor_matrix_.size();
if (fs)
{
col = descriptor_IDs_.size();
}
descriptor_names_.resize(col);
bool transform = 0; bool y_transform = 0;
if (data->descriptor_transformations_.size() != 0)
{
transform = 1;
descriptor_transformations_.resize(2, col);
if (data->y_transformations_.size() != 0)
{
y_transformations_.resize(2, data->Y_.size());
y_transform = 1;
}
}
bool xlabels = 0;
if (data->column_names_.size() != 0)
{
xlabels = 1;
}
int t = 0; // index in line of training data
std::multiset<unsigned int>::iterator it = descriptor_IDs_.begin();
// copy selected descriptors, their names and the information about their transformations (mean and stddev of each descriptor)
for (unsigned int j = 0; j < data->descriptor_matrix_.size() && (!fs || it != descriptor_IDs_.end()); j++)
{
// set only those columns that belong to selected descriptors
if ( (fs && *it == j) || !fs )
{
if (xlabels)
{
descriptor_names_[t] = data->column_names_[j];
}
if (transform)
{
descriptor_transformations_(0, t) = data->descriptor_transformations_[j][0];
descriptor_transformations_(1, t) = data->descriptor_transformations_[j][1];
}
t++;
if (fs)
{
it++;
}
}
}
}
Eigen::VectorXd Model::getSubstanceVector(const vector<double> & substance, bool transform)
{
if (transform == 1 && descriptor_transformations_.cols() == 0)
{
transform = 0;
//throw Exception::InconsistentUsage(__FILE__, __LINE__, "Transformation of test data requested although no scaling of training data was done!!");
}
if ( (data != NULL && data->getNoDescriptors() != substance.size()) || (data == NULL && substance.size() <= *(descriptor_IDs_.end()--)) )
{
String message="For compounds whose activity is to be predicted, the same features must be available as for the training data!\n";
message += "No of features of given compound: ";
message += String(substance.size())+"\n";
message += "No of required features: ";
if (data) message += String(data->getNoDescriptors());
else message += String(*(descriptor_IDs_.end()--));
throw Exception::InconsistentUsage(__FILE__, __LINE__, message.c_str());
}
bool fs = 0; // has feature selection being done?
if (!descriptor_IDs_.empty())
{
fs = 1;
}
std::multiset<unsigned int>::iterator it = descriptor_IDs_.begin();
int t = 0; // index in line of test data
int length = descriptor_matrix_.cols();
if (fs)
{
length = descriptor_IDs_.size();
}
Eigen::RowVectorXd v(length);
// if no feature selection was done, i.e. if descriptor_IDs_ is empty
if (!fs)
{
if (transform)
{
for (int i = 0; i < length; i++)
{
double stddev = descriptor_transformations_(1, i);
if (stddev == 0) {stddev = 0.001; }
v(i) = (substance[i]-descriptor_transformations_(0, i))/stddev;
}
}
else
{
for (int i = 0; i < length; i++)
{
v(i) = substance[i];
}
}
}
//if feature selection was done, consider only those descriptors whose IDs are in descriptor_IDs_
else
{
if (transform)
{
for (int i = 0; i < length; i++)
{
t = *it;
double stddev = descriptor_transformations_(1, i);
if (stddev == 0) {stddev = 0.001; }
v(i) = (substance[t]-descriptor_transformations_(0, i))/stddev;
it++;
}
}
else
{
for (int i = 0; i < length; i++)
{
t = *it;
v(i) = substance[t];
it++;
}
}
}
return v;
}
Eigen::VectorXd Model::getSubstanceVector(const Eigen::VectorXd & substance, bool transform)
{
if (transform == 1 && descriptor_transformations_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Transformation of test data requested although no scaling of training data was done!!");
}
if ( (data != NULL && data->getNoDescriptors() != substance.rows()) || (data == NULL && substance.rows() <= *(descriptor_IDs_.end()--)) )
{
String message="For compounds whose activity is to be predicted, the same number of features must be present than within the training data!\n";
message += "No of features of given compound: ";
message += String(substance.rows())+"\n";
message += "No of required features: ";
if (data) message += String(data->getNoDescriptors());
else message += String(*(descriptor_IDs_.end()--));
throw Exception::InconsistentUsage(__FILE__, __LINE__, message.c_str());
}
bool fs = 0; // has feature selection being done?
if (!descriptor_IDs_.empty())
{
fs = 1;
}
std::multiset<unsigned int>::iterator it = descriptor_IDs_.begin();
int t = 0; // index in line of test data
int length = descriptor_matrix_.cols();
if (fs)
{
length = descriptor_IDs_.size();
}
Eigen::RowVectorXd v(length);
// if no feature selection was done, i.e. if descriptor_IDs_ is empty
if (!fs)
{
if (transform)
{
for (int i = 0; i < length; i++)
{
double stddev = descriptor_transformations_(1, i);
if (stddev == 0) {stddev = 0.001; }
v(i) = (substance(i)-descriptor_transformations_(0, i))/stddev;
}
}
else
{
v = substance;
}
}
//if feature selection was done, consider only those descriptors whose IDs are in descriptor_IDs_
else
{
if (transform)
{
for (int i = 0; i < length; i++)
{
t = *it; // descr. IDs start at 0 !
double stddev = descriptor_transformations_(1, i);
if (stddev == 0) {stddev = 0.001; }
v(i) = (substance(t+1)-descriptor_transformations_(0, i))/stddev;
it++;
}
}
else
{
for (int i = 0; i < length; i++)
{
t = *it;
v(i) = substance(t);
it++;
}
}
}
return v;
}
void Model::backTransformPrediction(Eigen::VectorXd & pred)
{
for (int i = 0; i < y_transformations_.cols(); i++)
{
double stddev = y_transformations_(1, i);
pred(i) = pred(i)*stddev+y_transformations_(0, i);
}
}
const Eigen::MatrixXd* Model::getDescriptorMatrix()
{
return &descriptor_matrix_;
}
const vector<string>* Model::getSubstanceNames()
{
return &substance_names_;
}
const vector<string>* Model::getDescriptorNames()
{
return &descriptor_names_;
}
const Eigen::MatrixXd Model::getDescriptorTransformations()
{
return descriptor_transformations_;
}
const Eigen::MatrixXd Model::getYTransformations()
{
return y_transformations_;
}
const Eigen::MatrixXd* Model::getY()
{
return &Y_;
}
void Model::setDescriptorIDs(const std::multiset<unsigned int>& sl)
{
descriptor_IDs_ = sl;
}
std::multiset<unsigned int>* Model::getDescriptorIDs()
{
return &descriptor_IDs_;
}
vector<double> Model::getParameters() const
{
vector<double> d(0);
return d;
}
void Model::setDataSource(const QSARData* q)
{
data = q;
}
void Model::addLambda(Eigen::MatrixXd& matrix, double& lambda)
{
if (matrix.rows() != matrix.cols())
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Model::addLambda error: ", "Lambda can only be added to a square matrix!");
}
for (int i = 1; i < matrix.rows(); i++)
{
matrix(i, i) += lambda;
}
}
void Model::readMatrix(Eigen::MatrixXd & mat, ifstream& in, unsigned int lines, unsigned int col)
{
mat.resize(lines, col);
String line;
for (unsigned int i = 0; i < lines; i++)
{
//getline(in, line);
for (unsigned int j = 0; j < col; j++)
{
String s;
in>>s;
mat(i, j) = s.toDouble(); // = line.getField(j, "\t").toDouble();
}
}
getline(in, line); // read the rest of the last matrix-line
}
void Model::readVector(Eigen::RowVectorXd & vec, ifstream& in, unsigned int no_cells, bool column_vector)
{
vec.resize(no_cells);
String line;
for (unsigned int i = 0; i < no_cells; i++)
{
String s;
in>>s;
vec(i) = s.toDouble(); // = line.getField(j, "\t").toDouble();
}
getline(in, line); // read the rest of the last matrix-line
}
void Model::readModelParametersFromFile(ifstream& input)
{
String line;
getline(input, line); // skip comment line
getline(input, line);
int c = line.countFields("\t");
vector<double> v;
for (int i = 0; i < c; i++)
{
v.push_back(line.getField(i, "\t").toDouble());
}
setParameters(v);
getline(input, line); // skip empty line
}
void Model::saveModelParametersToFile(ofstream& out)
{
out<<"# model-parameters"<<endl;
vector<double> v = getParameters();
for (unsigned int i = 0; i < v.size(); i++)
{
out<<v[i]<<"\t";
}
out<<endl<<endl;
}
void Model::readDescriptorInformationFromFile(ifstream& input, int no_descriptors, bool transformation)
{
descriptor_names_.clear();
if (transformation) descriptor_transformations_.resize(2, no_descriptors);
else descriptor_transformations_.resize(0, 0);
String line;
getline(input, line); // skip comment line
for (int i = 0; i < no_descriptors; i++)
{
getline(input, line);
unsigned int id = (unsigned int) line.getField(0, "\t").toInt();
descriptor_IDs_.insert(id);
descriptor_names_.push_back(line.getField(1, "\t"));
if (transformation)
{
descriptor_transformations_(0, i) = line.getField(2, "\t").toDouble();
descriptor_transformations_(1, i) = line.getField(3, "\t").toDouble();
}
}
getline(input, line); // skip empty line
}
void Model::saveDescriptorInformationToFile(ofstream& out)
{
out<<"# ID\tdescriptor-name\tcoefficient(s)\t";
bool centered_data = (descriptor_transformations_.cols() > 0);
if (centered_data)
{
out<<"mean of desc.\tstddev of desc.\t";
}
if (stderr)
{
out<<"stderr(s) of coeff.";
}
out<<endl;
if (!descriptor_IDs_.empty()) // write information about transformation of descriptors
{
std::multiset<unsigned int>::iterator d_it = descriptor_IDs_.begin();
for (unsigned int i = 0; i < descriptor_IDs_.size(); i++, ++d_it)
{
out<<String(*d_it)<<"\t"<<descriptor_names_[i]<<"\t";
if (centered_data)
{
out<<descriptor_transformations_(0, i)<<"\t"<<descriptor_transformations_(1, i)<<"\t";
}
out <<"\n";
}
}
else
{
for (unsigned int i = 0; i < descriptor_names_.size(); i++)
{
out<<String(i)<<"\t"<<descriptor_names_[i]<<"\t";
if (centered_data)
{
out<<descriptor_transformations_(0, i)<<"\t"<<descriptor_transformations_(1, i)<<"\t";
}
out <<"\n";
}
}
out<<endl;
}
void Model::readResponseTransformationFromFile(ifstream& input, int no_y)
{
y_transformations_.resize(2, no_y);
String line;
for (int i = 0; i < no_y; i++)
{
getline(input, line);
y_transformations_(0, i) = line.getField(0, "\t").toDouble();
y_transformations_(1, i) = line.getField(1, "\t").toDouble();
}
getline(input, line); // skip empty line
}
void Model::saveResponseTransformationToFile(ofstream& out)
{
if (y_transformations_.cols() != 0)
{
for (int i = 0; i < y_transformations_.cols(); i++)
{
out<<y_transformations_(0, i)<<"\t"<<y_transformations_(1, i)<<endl;
}
out<<endl;
}
}
bool Model::optimizeParameters(int k)
{
return optimizeParameters(k, default_no_opt_steps_);
}
void Model::getUnnormalizedFeatureValue(int compound, int feature, double& return_value)
{
if (compound < 1 || feature < 1 || compound > (int)descriptor_matrix_.rows() || feature > (int)descriptor_matrix_.cols())
{
cout<<"Model::getUnnormalizedFeatureValue(): Specified compound or feature ID is out of range!"<<endl;
BALL::Exception::OutOfRange e(__FILE__, __LINE__);
e.setMessage("Specified compound or feature ID is out of range!");
throw e;
}
return_value = descriptor_matrix_(compound, feature);
if (descriptor_transformations_.cols() > 0)
{
return_value *= descriptor_transformations_(1, feature); // stddev
return_value += descriptor_transformations_(0, feature); // mean
}
}
void Model::getUnnormalizedResponseValue(int compound, int response, double& return_value)
{
if (compound < 1 || response < 1 || compound > (int)Y_.rows() || response > (int)Y_.cols())
{
cout<<"Model::getUnnormalizedFeatureValue(): Specified compound or response ID is out of range!"<<endl;
BALL::Exception::OutOfRange e(__FILE__, __LINE__);
e.setMessage("Specified compound or response ID is out of range!");
throw e;
}
return_value = Y_(compound, response);
if (y_transformations_.cols() > 0)
{
return_value *= y_transformations_(1, response); // stddev
return_value += y_transformations_(0, response); // mean
}
}
Model* createNewModelFromFile(String model_file, const QSARData& q)
{
Registry reg;
Model* m;
String model_type;
ifstream model_input(model_file.c_str()); // read model-abbreviation
if (!model_input)
{
throw BALL::Exception::FileNotFound(__FILE__, __LINE__, model_file);
}
getline(model_input, model_type);
getline(model_input, model_type);
model_type = model_type.getField(0, "\t");
model_input.close();
RegistryEntry* entry = reg.getEntry(model_type);
if (!entry->kernel)
{
m = (*entry->create)(q);
}
else
{
// parameters irrelevant; will be overwritten by those read from file
m = (*entry->createKernel1)(q, 1, 1, -1);
}
m->readFromFile(model_file);
return m;
}
}
}
|