1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/allModel.h>
#include <Eigen/Dense>
namespace BALL
{
namespace QSAR
{
ALLModel::ALLModel(const QSARData& q, double kw) : NonLinearModel(q)
{
kw_ = kw;
type_ = "ALL";
lambda_ = 0.005;
training_result_.resize(0, 0);
default_no_opt_steps_ = 50;
}
ALLModel::~ALLModel()
{
}
void ALLModel::setKw(double kw)
{
kw_ = kw;
}
double ALLModel::getKw()
{
return kw_;
}
void ALLModel::calculateEuclDistanceMatrix(Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output)
{
output.resize(m1.rows(), m2.rows());
output.setZero();
Statistics n;
for (int i = 0; i < m1.rows(); i++)
{
for (int j = 0; j < m2.rows(); j++)
{
//get euclidean distances of the two current rows
output(i, j) = n.euclDistance(m1, m2, i, j);
}
}
}
Eigen::VectorXd ALLModel::predict(const vector<double> & substance, bool transform)
{
if (descriptor_matrix_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Training data must be read into the ALL-model before the activity of a substance can be predicted!");
}
Eigen::VectorXd v0 = getSubstanceVector(substance, transform);
Eigen::MatrixXd v(1, v0.rows());
v.row(0) = v0;
Eigen::MatrixXd dist;
// calculate distances between the given substance and the substances of X
// dimension of dist: 1xn
calculateEuclDistanceMatrix(v, descriptor_matrix_, dist);
Eigen::VectorXd w;
calculateWeights(dist, w);
Eigen::MatrixXd XX;
// calculate X.t()*X as cross-products weighted by the similarity of the given substance to the respective row of X
calculateXX(w, XX);
Eigen::MatrixXd XY;
// calculate X.t()*Y_ as cross-products weighted by the similarity of the given substance to the respective row of X
calculateXY(w, XY);
// rigde regression in order to be able to cope with linearly dependent columns, i.e. singular matrices
Eigen::MatrixXd im(XX.rows(), XX.rows()); im.setIdentity();
im *= lambda_;
XX += im;
Eigen::MatrixXd train = XX.colPivHouseholderQr().solve(XY);
Eigen::VectorXd res(Y_.cols());
res = v0.transpose()*train;
if (transform && y_transformations_.cols() != 0)
{
backTransformPrediction(res);
}
return res;
}
void ALLModel::calculateWeights(Eigen::MatrixXd& dist, Eigen::VectorXd& w)
{
w.resize(dist.cols());
for (int i = 0; i < dist.cols(); i++)
{
w(i) = exp(-pow(dist(0, i), 2)/(2*pow(kw_, 2)));
}
}
void ALLModel::calculateXX(Eigen::VectorXd& w, Eigen::MatrixXd& res)
{
res.resize(descriptor_matrix_.cols(), descriptor_matrix_.cols());
res.setZero();
// for all descriptors, calculate their weighted cross-product
for (int i = 0; i < descriptor_matrix_.cols(); i++)
{
for (int j = i; j < descriptor_matrix_.cols(); j++)
{
for (int s = 0; s < descriptor_matrix_.rows(); s++)
{
res(i, j) += w(s)*descriptor_matrix_(s, i)*descriptor_matrix_(s, j);
}
res(j, i) = res(i, j);
}
}
}
void ALLModel::calculateXY(Eigen::VectorXd& w, Eigen::MatrixXd& res)
{
res.resize(descriptor_matrix_.cols(), Y_.cols());
res.setZero();
for (int i = 0; i < descriptor_matrix_.cols(); i++)
{
for (int j = 0; j < Y_.cols(); j++)
{
for (int s = 0; s < descriptor_matrix_.rows(); s++)
{
res(i, j) += w(s)*descriptor_matrix_(s, i)*Y_(s, j);
}
}
}
}
bool ALLModel::optimizeParameters(int k, int no_steps)
{
double best_q2 = 0;
double best_kw = 0;
kw_ = 0;
for (int i = 0; i < no_steps; i++)
{
kw_ += 1;
validation->crossValidation(k);
if (validation->getQ2() > best_q2)
{
best_q2 = validation->getQ2();
best_kw = kw_;
}
else if (validation->getQ2() < best_q2*0.5)
{
break;
}
}
kw_ = best_kw;
validation->setQ2(best_q2);
return 1;
}
void ALLModel::setParameters(vector<double>& v)
{
if (v.size() != 2)
{
String c = "Wrong number of model parameters! Needed: 2;";
c = c+" given: "+String(v.size());
throw Exception::ModelParameterError(__FILE__, __LINE__, c.c_str());
}
kw_ = v[0];
lambda_ = v[1];
}
vector<double> ALLModel::getParameters() const
{
vector<double> d;
d.push_back(kw_);
d.push_back(lambda_);
return d;
}
void ALLModel::saveToFile(string filename)
{
std::ofstream out(filename.c_str());
const Eigen::MatrixXd* coeffErrors = validation->getCoefficientStdErrors();
bool sterr = 0;
if (coeffErrors->cols() != 0)
{
sterr = 1;
}
bool centered_data = 0;
bool centered_y = 0;
if (descriptor_transformations_.cols() != 0)
{
centered_data = 1;
if (y_transformations_.cols() != 0)
{
centered_y = 1;
}
}
int sel_features = descriptor_IDs_.size();
if (sel_features == 0)
{
sel_features = data->getNoDescriptors();
}
int no_y = training_result_.cols();
if (no_y == 0) no_y = y_transformations_.cols(); // correct no because transformation information will have to by read anyway when reading this model later ...
out<<"# model-type_\tno of featues in input data\tselected featues\tno of response variables\tcentered descriptors?\tcentered response?\tno of substances"<<std::endl;
out<<type_<<"\t"<<data->getNoDescriptors()<<"\t"<<sel_features<<"\t"<<no_y<<"\t"<<centered_data<<"\t"<<centered_y<<"\t"<<descriptor_matrix_.rows()<<"\n\n";
saveModelParametersToFile(out);
saveResponseTransformationToFile(out);
saveDescriptorInformationToFile(out);
out<<descriptor_matrix_<<std::endl;
out<<Y_<<std::endl;
out.close();
}
void ALLModel::readFromFile(string filename)
{
std::ifstream input(filename.c_str());
if (!input)
{
throw BALL::Exception::FileNotFound(__FILE__, __LINE__, filename);
}
String line0;
getline(input, line0); // skip comment line
getline(input, line0); // read read line containing model specification
if (line0.getField(0, "\t") != type_)
{
String e = "Wrong input data! Use training data file generated by a ";
e = e + type_ + " model !";
throw Exception::WrongDataType(__FILE__, __LINE__, e.c_str());
}
int no_descriptors = line0.getField(2, "\t").toInt();
int no_y = line0.getField(3, "\t").toInt();
bool centered_data = line0.getField(4, "\t").toInt();
bool centered_y = line0.getField(5, "\t").toInt();
int no_substances = line0.getField(6, "\t").toInt();
substance_names_.clear();
getline(input, line0); // skip empty line
readModelParametersFromFile(input);
if (centered_y)
{
readResponseTransformationFromFile(input, no_y);
}
Model::readDescriptorInformationFromFile(input, no_descriptors, centered_data);
readMatrix(descriptor_matrix_, input, no_substances, no_descriptors);
getline(input, line0); // skip empty line
readMatrix(Y_, input, no_substances, no_y);
}
}
}
|