File: kpcrModel.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (97 lines) | stat: -rw-r--r-- 2,057 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#include <BALL/QSAR/kpcrModel.h>
#include <BALL/QSAR/pcrModel.h>

#include <Eigen/Dense>

namespace BALL
{
	namespace QSAR
			{


		KPCRModel::KPCRModel(const QSARData& q, int k_type, double p1, double p2) : KernelModel(q, k_type, p1, p2) 
		{
			type_="KPCR";
			frac_var_ = 0.99;
		}

		KPCRModel::KPCRModel(const QSARData& q, Eigen::VectorXd& w) : KernelModel(q, w) 
		{
			type_="KPCR";
			frac_var_ = 0.99;
		}

		KPCRModel::KPCRModel(const QSARData& q, String s1, String s2) : KernelModel(q, s1, s2) 
		{
			type_="KPCR";
			frac_var_ = 0.99;
		}


		KPCRModel::KPCRModel(const QSARData& q, const LinearModel& lm, int column) : KernelModel(q, lm, column) 
		{
			type_="KPCR";
			frac_var_ = 0.99;
		}


		KPCRModel::~KPCRModel()
		{
		}
			

		void KPCRModel::setFracVar(double frac_var)
		{
			frac_var_ = frac_var;
		}


		void KPCRModel::train()
		{
			if (descriptor_matrix_.cols() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!"); 
			}
			
			kernel->calculateKernelMatrix(descriptor_matrix_, K_);
			
			PCRModel::calculateEigenvectors(K_, frac_var_, loadings_);
			
			latent_variables_ = K_*loadings_;

			//result of RR is a linear combination of latente variables 
			// = column with length = no of latente variables = > matrix for more than one modelled activity
			Eigen::MatrixXd m = latent_variables_.transpose()*latent_variables_;

			weights_ = m.colPivHouseholderQr().solve(latent_variables_.transpose()*Y_);
			training_result_ = loadings_*weights_;
			
			calculateOffsets();
		}


		void KPCRModel::setParameters(vector<double>& v)
		{
			if (v.size() != 1)
			{
				String c = "Wrong number of model parameters! Needed: 1;";
				c = c+" given: "+String(v.size());
				throw Exception::ModelParameterError(__FILE__, __LINE__, c.c_str());
			}
			frac_var_ = v[0];
		}


		vector<double> KPCRModel::getParameters() const
		{
			vector<double> d;
			d.push_back(frac_var_);
			return d;
		}
	}
}