File: ldaModel.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (261 lines) | stat: -rw-r--r-- 6,992 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#include <BALL/QSAR/ldaModel.h>

#include <Eigen/Dense>

#include <limits>

using namespace std;

namespace BALL
{
	namespace QSAR
	{
			
		LDAModel::LDAModel(const QSARData& q) : ClassificationModel(q) 
		{
			lambda_ = 0.0001;
			type_="LDA";
		}

		LDAModel::~LDAModel()
		{
		}

		void LDAModel::train()
		{
			if (descriptor_matrix_.cols() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!"); 
			}
			readLabels();
			
			// map values of Y to their index
			map<int, unsigned int> label_to_pos; 
			for (unsigned int i = 0; i < labels_.size(); i++)
			{
				label_to_pos.insert(make_pair(labels_[i], i));
			}

			// calculate sigma_ = covariance matrix of descriptors
			sigma_.resize(descriptor_matrix_.cols(), descriptor_matrix_.cols());
			for (int i = 0; i < descriptor_matrix_.cols(); i++)
			{
				double mi = Statistics::getMean(descriptor_matrix_, i);
				for (int j = 0; j < descriptor_matrix_.cols(); j++)
				{
					sigma_(i, j) = Statistics::getCovariance(descriptor_matrix_, i, j, mi);
				}
			}
			Eigen::MatrixXd I(sigma_.cols(), sigma_.cols()); I.setIdentity();
			I *= lambda_;
			sigma_ += I;

			sigma_ = sigma_.inverse();

			mean_vectors_.resize(Y_.cols());
			no_substances_.clear();
			no_substances_.resize(labels_.size(), 0);
			for (int c = 0; c < Y_.cols(); c++)
			{
				vector < int > no_substances_c(labels_.size(), 0);  // no of substances in each class for activitiy c
				mean_vectors_[c].resize(labels_.size(), descriptor_matrix_.cols());
				mean_vectors_[c].setZero();
				
				for (int i = 0; i < descriptor_matrix_.rows(); i++) // calculate sum vector of each class
				{
					int yi = static_cast < int > (Y_(i, c)); // Y_ will contains only ints for classifications
					int pos = label_to_pos.find(yi)->second; 
					
					for (int j = 0; j < descriptor_matrix_.cols(); j++)
					{
						mean_vectors_[c](pos, j) += descriptor_matrix_(i, j);
					}
					
					if (c == 0) no_substances_c[pos]++; 
					
				}
				
				for (int i = 0; i < mean_vectors_[c].rows(); i++) // calculate mean vector of each class
				{
					if (no_substances_c[i] == 0)
					{
						mean_vectors_[c].row(i).setConstant(std::numeric_limits<double>::infinity());  // set mean of classes NOT occurring for activitiy c to inf
					}
					
					for (int j = 0; j < descriptor_matrix_.cols(); j++)
					{
						mean_vectors_[c](i, j) = mean_vectors_[c](i, j)/no_substances_c[i];
					}
				}
				
				for (unsigned int i = 0; i < no_substances_.size(); i++) // update overall number of substances per class
				{
					no_substances_[i] += no_substances_c[i];
				}
			}
			
		}


		Eigen::VectorXd LDAModel::predict(const vector<double> & substance, bool transform)
		{
			if (sigma_.cols() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained before it can predict the activitiy of substances!"); 
			}
			// search class to which the given substance has the smallest distance
			Eigen::VectorXd s = getSubstanceVector(substance, transform); // dim: 1xm
			
			int min_k = 0;
			double min_dist = 99999999;
			Eigen::VectorXd result(mean_vectors_.size());
			
			for (unsigned int c = 0; c < mean_vectors_.size(); c++)
			{
				for (int k = 0; k < mean_vectors_[c].rows(); k++)
				{
					Eigen::VectorXd diff(s.rows()); 
					for (unsigned int i = 0; i < s.rows(); i++)
					{
						diff(i) = s(i)-mean_vectors_[c](k, i); 
					}
					double dist = diff.transpose()*sigma_*diff;
					if (dist < min_dist)
					{
						min_dist = dist;
						min_k = k;
					}
				}
				result(c) = labels_[min_k];
			}
			
			return result;
			
		}

		void LDAModel::setParameters(vector<double>& v)
		{
			if (v.size() != 1)
			{
				String c = "Wrong number of model parameters! Needed: 1;";
				c = c+" given: "+String(v.size());
				throw Exception::ModelParameterError(__FILE__, __LINE__, c.c_str());
			}
			lambda_ = v[0];
		}


		vector<double> LDAModel::getParameters() const
		{
			vector<double> d;
			d.push_back(lambda_);
			return d;
		}


		void LDAModel::saveToFile(string filename)
		{
			bool trained = 1;
			if (sigma_.rows() == 0) trained = 0; 
			
			ofstream out(filename.c_str());
			
			bool centered_data = 0;
			bool centered_y = 0;
			if (descriptor_transformations_.cols() != 0)
			{
				centered_data = 1;
				if (y_transformations_.cols() != 0)
				{
					centered_y = 1;
				}
			}
			
			int sel_features = descriptor_IDs_.size();
			if (sel_features == 0)
			{
				sel_features = data->getNoDescriptors();
			}
			
			
			int no_y = sigma_.cols();
			if (no_y == 0) no_y = y_transformations_.cols(); // correct no because transformation information will have to by read anyway when reading this model later ...
			
			out<<"# model-type_\tno of featues in input data\tselected featues\tno of response variables\tcentered descriptors?\tno of classes\ttrained?"<<endl;
			out<<type_<<"\t"<<data->getNoDescriptors()<<"\t"<<sel_features<<"\t"<<no_y<<"\t"<<centered_data<<"\t"<<no_substances_.size()<<"\t"<<trained<<"\n\n";

			saveModelParametersToFile(out);
			saveResponseTransformationToFile(out); 
			saveDescriptorInformationToFile(out); 
			
			if (!trained) return; 
			
			saveClassInformationToFile(out); 
			out<<sigma_<<endl;
			
			for (unsigned int i = 0; i < mean_vectors_.size(); i++)   // write all mean-vector matrices
			{
				out<<mean_vectors_[i]<<endl;
			}

			out.close();
		}



		void LDAModel::readFromFile(string filename)
		{
			ifstream input(filename.c_str()); 
			if (!input)
			{
				throw BALL::Exception::FileNotFound(__FILE__, __LINE__, filename);
			}	
			
			String line0;
			getline(input, line0);  // skip comment line 
			getline(input, line0);  // read read line containing model specification
			
			if (line0.getField(0, "\t") != type_)
			{
				String e = "Wrong input data! Use training data file generated by a ";
				e = e + type_ + " model !";
				throw Exception::WrongDataType(__FILE__, __LINE__, e.c_str());
			}
			
			int no_descriptors = line0.getField(2, "\t").toInt();
			int no_y = line0.getField(3, "\t").toInt();
			bool centered_data = line0.getField(4, "\t").toInt();
			int no_classes = line0.getField(5, "\t").toInt();
			bool trained = line0.getField(6, "\t").toBool();

			substance_names_.clear();
			
			getline(input, line0);  // skip empty line	
			readModelParametersFromFile(input);
			Model::readDescriptorInformationFromFile(input, no_descriptors, centered_data); 
			
			if (!trained) 
			{
				sigma_.resize(0, 0);
				return;
			}
			
			readClassInformationFromFile(input, no_classes); 
			readMatrix(sigma_, input, no_descriptors, no_descriptors); 
			getline(input, line0);  // skip empty line 
			
			mean_vectors_.resize(no_y);
			for (int c = 0; c < no_y; c++) // read all mean-vector matrices
			{
				readMatrix(mean_vectors_[c], input, no_classes, no_descriptors);
			}
			
			input.close();
		}
	}
}