1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/libsvmModel.h>
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
using namespace BALL::QSAR;
LibsvmModel::LibsvmModel(const QSARData& q, int k_type, double p1, double p2) : SVRModel(q, k_type, p1, p2)
{
type_="SVR";
svm_train_result_ = NULL;
use_nu_ = 1;
nu_ = 0.05;
p_ = 0.1;
eps_ = 1e-3;
C_ = 1;
createParameters();
x_space_ = NULL;
}
LibsvmModel::~LibsvmModel()
{
delete x_space_;
}
void LibsvmModel::train()
{
if (descriptor_matrix_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!");
}
kernel->calculateKernelMatrix(descriptor_matrix_, K_);
struct svm_problem* prob = NULL;
training_result_.resize(K_.rows(), Y_.cols());
offsets_.resize(Y_.cols());
for (int act = 0; act <= Y_.cols(); act++)
{
prob = createProblem(act);
svm_train_result_ = (LibsvmModel::svm_model*)svm_train(prob, ¶meters_);
free(prob->y);free(prob->x);free(prob);
const double* const *sv_coef = svm_train_result_->sv_coef;
//const svm_node* const *SV = svm_train_result_->SV;
for(int i=0;i<svm_train_result_->l;i++) // l=#support vectors == #compounds
{
for (int j = 0; j < svm_train_result_->nr_class-1; j++)
{
training_result_(i, j) = sv_coef[j][i];
}
}
offsets_(act) = svm_train_result_->rho[0];
//free(prob);
//free(prob->y); free(prob->x);
#ifdef LIBSVM_VERSION
svm_free_and_destroy_model((::svm_model**)&svm_train_result_);
#else
svm_destroy_model((::svm_model*)svm_train_result_);
#endif
}
}
struct svm_problem* LibsvmModel::createProblem(int response_id)
{
struct svm_problem* prob = Malloc(svm_problem, 1);
prob->l = K_.rows();
prob->y = Malloc(double, prob->l);
prob->x = Malloc(struct svm_node*, prob->l);
int elements = (K_.cols()+2)*K_.rows();
free(x_space_);
x_space_ = Malloc(struct svm_node, elements);
int cols = K_.cols();
int index = 0;
for (int i = 0; i < K_.rows(); i++)
{
//prob->x[i-1] = Malloc(struct svm_node, cols+1);
prob->x[i] = &x_space_[index];
prob->y[i] = Y_(i, response_id);
x_space_[index].index = 0;
x_space_[index].value = i; // numer of current row
index++;
for (int j = 0; j < cols; j++)
{
//prob->x[i-1][j-1].index = j;
//prob->x[i-1][j-1].value = K_(i, j);
x_space_[index].index = j;
x_space_[index].value = K_(i, j);
index++;
}
//prob->x[i-1][cols].index = -1;
//prob->x[i-1][cols].value = '?';
x_space_[index].index = -1;
x_space_[index].value = '?';
index++;
}
return prob;
}
void LibsvmModel::createParameters()
{
parameters_.kernel_type = 4; // use precomputed kernel !
parameters_.cache_size = 100;
if (use_nu_)
{
parameters_.svm_type = 4;
}
else
{
parameters_.svm_type = 3;
}
parameters_.nu = nu_;
parameters_.C = C_;
parameters_.eps = eps_;
parameters_.p = p_;
parameters_.shrinking = use_shrinking_;
parameters_.probability = 0;
}
// RowVector LibsvmModel::predict(const Eigen::VectorXd& substance, bool transform)
// {
// if(svm_train_result_==NULL)
// {
// throw Exception::InconsistentUsage(__FILE__,__LINE__,"Model must be trained before it can predict the activitiy of substances!");
// }
// RowVector input=getSubstanceVector(substance, transform);
// Matrix K_t(input.rows(), descriptor_matrix_.rows());
// kernel->calculateKernelMatrix(K_,input, descriptor_matrix_, K_t);
//
// svm_node* node = Malloc(struct svm_node, K_t.cols()+1);
//
// for(int i=1; i<=K_t.cols(); i++)
// {
// node[i-1].index = i-1;
// node[i-1].value = K_t(1,i);
// }
// node[K_t.cols()].index = -1;
// node[K_t.cols()].value = '?';
//
// double res = svm_predict(svm_train_result_, node);
//
// RowVector rv(1);
// rv << res;
//
// if(transform && y_transformations_.cols()!=0)
// {
// backTransformPrediction(rv);
// }
//
// free(node);
// return rv;
// }
void LibsvmModel::setParameters(vector<double>& v)
{
if (v.size() != 6)
{
String c = "Wrong number of model parameters! Needed: 6;";
c = c+" given: "+String(v.size());
throw Exception::ModelParameterError(__FILE__, __LINE__, c.c_str());
}
String d = v[0];
use_nu_ = d.toBool();
d = v[1];
use_shrinking_ = d.toBool();
nu_ = v[2];
p_ = v[3];
eps_ = v[4];
C_ = v[5];
createParameters();
}
vector<double> LibsvmModel::getParameters() const
{
vector<double> d;
d.push_back(use_nu_);
d.push_back(use_shrinking_);
d.push_back(nu_);
d.push_back(p_);
d.push_back(eps_);
d.push_back(C_);
return d;
}
|