1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/logitModel.h>
#include <Eigen/Dense>
using namespace std;
namespace BALL
{
namespace QSAR
{
LogitModel::LogitModel(const QSARData& q) : ClassificationModel(q)
{
type_="logit";
}
LogitModel::~LogitModel()
{
}
void LogitModel::train()
{
if (descriptor_matrix_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!");
}
readLabels();
int lines = descriptor_matrix_.rows();
int col = descriptor_matrix_.cols();
training_result_.resize(col, Y_.cols());
Eigen::MatrixXd I(col, col);
I.setIdentity();
I *= 0.0001;
for (int c = 0; c < Y_.cols(); c++)
{
Eigen::VectorXd beta(col);
beta.setZero();
for ( int b = 0; b < 100; b++)
{
// calculate matrix W and vector p
Eigen::VectorXd p(lines);
Eigen::MatrixXd W(lines, lines); W.setZero(); // diagonal matrix
for (int i = 0; i < lines; i++)
{
double nom = exp(descriptor_matrix_.row(i).dot(beta));
p(i) = nom/(1+nom);
W(i, i) = p(i)*(1/(1+nom));
}
Eigen::VectorXd beta_old = beta;
Eigen::MatrixXd xwx = descriptor_matrix_.transpose() * W * descriptor_matrix_ + I;
p = Y_.row(c) - p;
beta += xwx.colPivHouseholderQr().solve(descriptor_matrix_.transpose()*p);
//beta = xwx.i()*descriptor_matrix_.t()*W*(descriptor_matrix_*beta+W.i()*(Y_.Column(c)-p));
if (Statistics::euclDistance(beta, beta_old)/Statistics::euclNorm(beta) < 0.01)
{
break;
}
}
training_result_.col(c) = beta;
}
}
Eigen::VectorXd LogitModel::predict(const vector<double> & substance, bool transform)
{
if (training_result_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained before it can predict the activitiy of substances!");
}
Eigen::VectorXd v = getSubstanceVector(substance, transform);
Eigen::VectorXd res = v*training_result_;
if (transform)
{
backTransformPrediction(res);
}
for (unsigned int i = 0; i < res.rows(); i++)
{
if (res(i) >= 0)
{
res(i) = 1;
}
else
{
res(i) = 0;
}
}
return res;
}
void LogitModel::saveToFile(string filename)
{
if (training_result_.rows() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must have been trained before the results can be saved to a file!");
}
ofstream out(filename.c_str());
bool centered_data = 0;
if (descriptor_transformations_.cols() != 0)
{
centered_data = 1;
}
int sel_features = descriptor_IDs_.size();
if (sel_features == 0)
{
sel_features = data->getNoDescriptors();
}
int no_y = training_result_.cols();
if (no_y == 0) no_y = y_transformations_.cols(); // correct no because transformation information will have to by read anyway when reading this model later ...
out<<"# model-type_\tno of featues in input data\tselected featues\tno of response variables\tcentered descriptors?\tno of classes"<<endl;
out<<type_<<"\t"<<data->getNoDescriptors()<<"\t"<<sel_features<<"\t"<<no_y<<"\t"<<centered_data<<"\t"<<no_substances_.size()<<"\n\n";
out<<"# model-parameters"<<endl; /// write model parameters
vector<double> v = getParameters();
for (unsigned int i = 0; i < v.size(); i++)
{
out<<v[i]<<"\t";
}
out<<endl;
out<<"\n# ID\tdescriptor-name\tcoefficient(s)\t";
if (centered_data)
{
out<<"mean of desc.\tstddev of desc.\t";
}
if (stderr)
{
out<<"stderr(s) of coeff.";
}
out<<endl;
if (!descriptor_IDs_.empty()) /// write descriptors and information about their transformation
{
std::multiset<unsigned int>::iterator d_it = descriptor_IDs_.begin();
for (int i = 0; i < training_result_.rows(); i++, ++d_it)
{
out<<String(*d_it)<<"\t"<<descriptor_names_[i]<<"\t";
for (int j = 0; j < training_result_.cols(); j++)
{
out<<training_result_(i, j)<<"\t";
}
if (centered_data)
{
out<<descriptor_transformations_(0, i)<<"\t"<<descriptor_transformations_(1, i)<<"\t";
}
out <<"\n";
}
}
else
{
for (int i = 0; i < training_result_.rows(); i++)
{
out<<String(i)<<"\t"<<descriptor_names_[i]<<"\t";
for (int j = 0; j < training_result_.cols(); j++)
{
out<<training_result_(i, j)<<"\t";
}
if (centered_data)
{
out<<descriptor_transformations_(0, i)<<"\t"<<descriptor_transformations_(1, i)<<"\t";
}
out <<"\n";
}
}
out<<endl;
out<<"# class-labels_\n";
for (unsigned int i = 0; i < labels_.size(); i++) /// write class-labels_
{
out<<labels_[i]<<"\t";
}
out<<endl;
out<<"\n# no of substances of each class\n";
for (unsigned int i = 0; i < no_substances_.size(); i++) /// write numbers of substances of each class
{
out<<no_substances_[i]<<"\t";
}
out<<endl;
out.close();
}
void LogitModel::readFromFile(string filename)
{
ifstream input(filename.c_str());
if (!input)
{
throw BALL::Exception::FileNotFound(__FILE__, __LINE__, filename);
}
String line0;
getline(input, line0); // skip comment line
getline(input, line0); // read read line containing model specification
if (line0.getField(0, "\t") != type_)
{
String e = "Wrong input data! Use training data file generated by a ";
e = e + type_ + " model !";
throw Exception::WrongDataType(__FILE__, __LINE__, e.c_str());
}
int no_descriptors = line0.getField(2, "\t").toInt();
int no_y = line0.getField(3, "\t").toInt();
bool centered_data = line0.getField(4, "\t").toInt();
bool centered_y = line0.getField(5, "\t").toInt();
training_result_.resize(no_descriptors, no_y);
descriptor_names_.clear();
if (centered_data)
{
descriptor_transformations_.resize(2, no_descriptors);
}
getline(input, line0); // skip empty line
getline(input, line0); // skip comment line
getline(input, line0); /// read model parameters
int c = line0.countFields("\t");
vector<double> v;
for (int i = 0; i < c; i++)
{
v.push_back(line0.getField(i, "\t").toDouble());
}
setParameters(v);
getline(input, line0); // skip empty line
if (centered_y)
{
y_transformations_.resize(2, no_y);
for (int i = 0; i < no_y; i++)
{
getline(input, line0);
y_transformations_(0, i) = line0.getField(0, "\t").toDouble();
y_transformations_(1, i) = line0.getField(1, "\t").toDouble();
}
getline(input, line0); // skip empty line
}
getline(input, line0); // skip comment line
for (int i = 0; !input.eof(); i++)
{
String line;
getline(input, line);
if (line == ""){break; }
unsigned int id = line.getField(0, "\t").toInt();
descriptor_IDs_.insert(id);
descriptor_names_.push_back(line.getField(1, "\t"));
int j = 2;
for (; j < 2+no_y; j++)
{
training_result_(i, j-1) = line.getField(j, "\t").toDouble();
}
if (centered_data)
{
descriptor_transformations_(0, i) = line.getField(j, "\t").toDouble();
descriptor_transformations_(1, i) = line.getField(j+1, "\t").toDouble();
}
}
}
}
}
|