1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
// -*- Mode: weights_++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/plsModel.h>
#include <Eigen/Dense>
namespace BALL
{
namespace QSAR
{
PLSModel::PLSModel(const QSARData& q) : LinearModel(q)
{
type_="PLS";
no_components_ = 10;
}
PLSModel::~PLSModel()
{
}
int PLSModel::getNoComponents()
{
return no_components_;
}
void PLSModel::setNoComponents(int no)
{
no_components_ = no;
}
void PLSModel::train()
{
if (descriptor_matrix_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!");
}
int cols = descriptor_matrix_.cols();
Eigen::MatrixXd X = descriptor_matrix_;
Eigen::MatrixXd P; // Matrix P saves all vectors p
// determine the number of components that are to be created.
// no_components_ contains the number of components desired by the user,
// but obviously we cannot calculate more PLS components than features
unsigned int components_to_create = no_components_;
if (cols < no_components_) components_to_create = cols;
U_.resize(X.rows(), components_to_create);
loadings_.resize(cols, components_to_create);
weights_.resize(Y_.cols(), components_to_create);
latent_variables_.resize(descriptor_matrix_.rows(), components_to_create);
P.resize(cols, components_to_create);
Eigen::VectorXd w;
Eigen::VectorXd t;
Eigen::VectorXd c;
Eigen::VectorXd u = Y_.col(0);
Eigen::VectorXd u_old;
for (unsigned int j = 0; j < components_to_create; j++)
{
for (int i = 0; i < 10000; i++)
{
w = X.transpose()*u / Statistics::scalarProduct(u);
w = w / Statistics::euclNorm(w);
t = X*w;
c = Y_.transpose()*t / Statistics::scalarProduct(t);
u_old = u;
u = Y_*c / Statistics::scalarProduct(c);
if (Statistics::euclDistance(u, u_old)/Statistics::euclNorm(u) > 0.0000001)
{
continue;
}
else // if u has converged
{
break;
}
}
Eigen::VectorXd p = X.transpose()*t / Statistics::scalarProduct(t);
X -= t * p.transpose();
U_.col(j) = u;
loadings_.col(j) = w;
weights_.col(j) = c;
P.col(j) = p;
latent_variables_.col(j) = t;
}
// try // p's are not orthogonal to each other, so that in rare cases P.t()*loadings_ is not invertible
// {
// loadings_ = loadings_*(P.t()*loadings_).i();
// }
// catch(BALL::Exception::MatrixIsSingular e)
// {
// Eigen::MatrixXd I; I.setToIdentity(P.cols());
// I *= 0.0001;
// loadings_ = loadings_*(P.t()*loadings_+I).i();
// }
training_result_ = loadings_*(P.transpose()*loadings_).jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(weights_.transpose());
calculateOffsets();
}
bool PLSModel::optimizeParameters(int k, int no_steps)
{
double best_q2 = 0;
int best_no = 1;
for (int i = 1; i <= no_steps && i <= (int)data->getNoDescriptors() && (descriptor_IDs_.empty() || i <= (int)descriptor_IDs_.size()); i++)
{
no_components_ = i;
validation->crossValidation(k);
if (validation->getQ2() > best_q2)
{
best_q2 = validation->getQ2();
best_no = i;
}
else if (validation->getQ2() < 0.75*best_q2)
{
break; // for speed-up
}
}
no_components_ = best_no;
validation->setQ2(best_q2);
return 1;
}
const Eigen::MatrixXd* PLSModel::getU()
{
return &U_;
}
void PLSModel::setParameters(vector<double>& v)
{
if (v.size() != 1)
{
String c = "Wrong number of model parameters! Needed: 1;";
c = c+" given: "+String(v.size());
throw Exception::ModelParameterError(__FILE__, __LINE__, c.c_str());
}
no_components_ = (int) v[0];
}
vector<double> PLSModel::getParameters() const
{
vector<double> v;
v.push_back(no_components_);
return v;
}
}
}
|