File: regressionValidation.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (621 lines) | stat: -rw-r--r-- 17,733 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// 
#include <BALL/QSAR/regressionValidation.h>
#include <BALL/QSAR/statistics.h>
#include <BALL/QSAR/regressionModel.h>
#include <BALL/QSAR/kernelModel.h>
#include <BALL/QSAR/latentVariableModel.h>
#include <BALL/QSAR/registry.h>

#include <boost/random/mersenne_twister.hpp>

using namespace std;

namespace BALL
{
	namespace QSAR
	{

		RegressionValidation::RegressionValidation(RegressionModel* m) : Validation(m)
		{
			ssR_ = 0; ssE_ = 0; ssY_ = 0; Q2_ = -1; F_cv_ = -1; R2_ = -1; std_err_ = -1; F_regr_ = -1; max_error_ = -1;
			regr_model_ = m;
			predQualFetcher_ = &RegressionValidation::getQ2;
			fitQualFetcher_ = &RegressionValidation::getR2;
			selectStat(0); // choose standard == Q^2
		}

		RegressionValidation::~RegressionValidation()
		{
		}

		void RegressionValidation::setQ2(double d)
		{
			Q2_ = d;
		}

		void RegressionValidation::crossValidation(int k, bool restore)
		{
			crossValidation(k, NULL, restore);
		}


		void RegressionValidation::backupTrainingResults()
		{
			backup_data_.descriptor_matrix = regr_model_->descriptor_matrix_;
			backup_data_.training_result = regr_model_->training_result_;
			backup_data_.Y = regr_model_->Y_;
			
			KernelModel* k_model = dynamic_cast<KernelModel*>(regr_model_);
			LatentVariableModel* lv_model = dynamic_cast<LatentVariableModel*>(regr_model_);
			if (k_model)
			{
				backup_data_.K = k_model->K_;
			}
			if (lv_model)
			{
				backup_data_.latent_variables = *lv_model->getLatentVariables();
				backup_data_.loadings = *lv_model->getLoadings();
				backup_data_.weights = *lv_model->getWeights();
			}	
		}


		void RegressionValidation::restoreTrainingResults()
		{
			regr_model_->descriptor_matrix_ = backup_data_.descriptor_matrix;
			regr_model_->training_result_ = backup_data_.training_result;
			regr_model_->Y_ = backup_data_.Y;
			
			KernelModel* k_model = dynamic_cast<KernelModel*>(regr_model_);
			LatentVariableModel* lv_model = dynamic_cast<LatentVariableModel*>(regr_model_);
			if (k_model)
			{
				k_model->K_ = backup_data_.K;
			}
			if (lv_model)
			{
				lv_model->latent_variables_ = backup_data_.latent_variables;
				lv_model->loadings_ = backup_data_.loadings;
				lv_model->weights_ = backup_data_.weights;
			}
		}


		void RegressionValidation::crossValidation(int k, MatrixVector* results, bool restore)
		{
			if (model_->data->descriptor_matrix_.size() == 0 || model_->data->Y_.size() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be fetched from input-files by QSARData before cross-validation can be done!"); 
			}
			
			if (restore) backupTrainingResults(); 
			
			int lines = model_->data->descriptor_matrix_[0].size();
			int col = model_->data->descriptor_matrix_.size();
			if (!model_->descriptor_IDs_.empty())
			{
				col = model_->descriptor_IDs_.size();
			}
			Q2_ = 0; ssE_ = 0; ssR_ = 0; F_cv_ = 0;

			// test k times
			for (int i = 0; i < k; i++)
			{	
				int test_size = (lines+i)/k;
				int training_size = lines-test_size;
				model_->Y_.resize(training_size, model_->data->Y_.size());
				model_->descriptor_matrix_.resize(training_size, col); 
				test_substances_.resize(test_size);
				test_Y_.resize(test_size, model_->data->Y_.size());
				
				int train_line = 0;  // no of line in descriptor_matrix_ of model_
				int test_line = 0;
				
				//copy data to training and test data set
				for (int line = 0; line < lines; line++)
				{
					if ((line+1+i)%k == 0)
					{
						setTestLine(test_line, line);
						test_line++;
					}
					else
					{
						setTrainingLine(train_line, line);
						train_line++;
					}
					
				}
				// test Model with model_->predict() for each line of test-data
				model_->train();
				if (results != NULL){ results->push_back(*regr_model_->getTrainingResult()); }
				testAllSubstances(0); 	  // do not transform cross-validation test-data again...
				Q2_ += quality_;
			}
			Q2_ = Q2_/k;
			
			std_err_ = std_err_ / ((k-1)*lines);
			
			if (restore) restoreTrainingResults(); 
		}


		void RegressionValidation::testAllSubstances(bool transform)
		{	
			quality_ = 0; ssE_ = 0; ssR_ = 0; std_err_ = 0; ssY_ = 0;
			
			Eigen::VectorXd mean_Y(test_Y_.cols()); // mean of each activity
			//RowVector sum_of_squares(test_Y_.cols());
			
			/// In case of external test data (for which 'transform' == 1), data in test_Y_ has been backtransformed to original space and model_->predict(.., 1) will return the activity value in original space.
			/// In case of internal testing ('transform' == 0), data in test_Y_ is in transformed space and model->predict(.., 0) will return the activity value in the same space.
			
			for (int i = 0; i < test_Y_.cols(); i++)
			{
				mean_Y(i) = Statistics::getMean(test_Y_, i);	
			}
			//ssT_ =  sum_of_squares.Sum();
			
			for (unsigned int i = 0; i < test_substances_.size(); i++)
			{       
				Eigen::VectorXd rv = model_->predict(test_substances_[i], transform); 
				double error = 0;
				for (int k = 0; k < test_Y_.cols(); k++)
				{
					error += pow(test_Y_(i, k)-rv(k), 2);
					ssR_ += pow(mean_Y(k)-rv(k), 2);
					ssY_ += pow(mean_Y(k)-test_Y_(i, k), 2);
				}
				if (error > max_error_)
				{
					max_error_ = error;
				}
				ssE_ += error;
				
		// 		if (model_->type_ == "GP")
		// 		{
		// 			std_err_ += model_->calculateStdErr();
		// 		}
			}
			
			(this->*qualCalculation)();
			
		/*	if (model_->type_ == "GP")
			{
				std_err_ = std_err_/test_substances_.size();
			}*/	
		}


		void RegressionValidation::testInputData(bool transform)
		{ 
			if (model_->data->descriptor_matrix_.size() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be fetched from input-files by QSARData before a model_'s fit to it can be evaluated!"); 
			}
			
			if (model_->type_ != "ALL" && model_->type_ != "SVR" && model_->type_ != "KNN") // do not check dimensions of traning results for ALL, since ALL does no training
			{
				//unsigned int des = model_->descriptor_IDs_.size();
				//unsigned int data_cols = model_->data->descriptor_matrix_.size();
				unsigned int res_rows = regr_model_->training_result_.rows();
				//unsigned int desmat_cols = model_->descriptor_matrix_.cols();
				
				if (res_rows == 0)
				{
					throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained before its fit to the input data can be evaluated!"); 
				}
				unsigned int test_col = model_->descriptor_IDs_.size(); // no of columns of X^T X (linear model)
				unsigned int kernel_test_col = model_->descriptor_matrix_.rows();  // no of columns of X X^T (nonlinear model)
				if (test_col == 0)
				{
					test_col = model_->data->getNoDescriptors();
				}
				
				if (!transform && test_col != res_rows && kernel_test_col != res_rows)
				{
					throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained before its fit to the input data can be evaluated!"); 
				}
						 		 		 
		// 		else if ( des == 0 && data_cols != res_rows && data_cols != desmat_cols)
		// 		{
		// 			throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained with data containing the same number of features as the test data set!");
		// 		}
		// 		else if (des != 0 && res_rows != des && data_cols != desmat_cols)
		// 		{cout<<data_cols<<" "<<res_rows<<" "<<desmat_cols<<endl;cout.flush();
		// 			throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained with data containing the same number of features as the test data set!");
		// 		}
			}
			
			R2_ = 0; ssE_ = 0; ssR_ = 0; std_err_ = 0; F_regr_ = 0;
			int lines = model_->data->descriptor_matrix_[0].size();
			test_substances_.resize(lines);
			test_Y_.resize(lines, model_->data->Y_.size());
			
			bool back_transform = 0; 
			if (transform && model_->data->descriptor_transformations_.size() != 0)
			{
				// if test data is to be transformed according to centering of training data, BUT has already been centered itself
				back_transform = 1; 
			}

			for (int i = 0; i < lines; i++)
			{
				setTestLine(i, i, back_transform); 
			}
			testAllSubstances(transform); 
			R2_ = quality_;
			
			int col = model_->data->descriptor_matrix_.size();
			if (!model_->descriptor_IDs_.empty())
			{
				col = model_->descriptor_IDs_.size();
			}
		}


		void RegressionValidation::calculateCoefficientStdErrors(int k, bool b)
		{
			if (model_->data->descriptor_matrix_.size() == 0 || model_->data->Y_.size() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be fetched from input-files by QSARData before standart errors of coefficients can be calculated!"); 
			}
			if (dynamic_cast < KernelModel* > (model_))
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Calculation of the standard deviation of regression coefficients can only be done for _linear_ regression models in a meaningful way!"); 
			}
			backupTrainingResults();
			
			int no_activities = model_->data->Y_.size();
			MatrixVector* results = new MatrixVector;
			int no_descriptors = model_->data->descriptor_matrix_.size();
			if (!model_->descriptor_IDs_.empty())
			{
				no_descriptors = model_->descriptor_IDs_.size();
			}
			coefficient_stderr_.resize(no_descriptors, no_activities);
			
			if (b == 1)
			{
				bootstrap(k, results, false);
			}
			else
			{
				crossValidation(k, results, false);
			}
			
			for (int c = 0; c < no_activities; c++) // for all modelled activities
			{
				for (int m = 0; m < no_descriptors; m++) // for all descriptors
				{			
					double mean_mc = 0;
					double sumsquares_mc = 0;
					
					for (int i = 0; i < k; i++) // for all training results
					{
						mean_mc += (*results)[i](m, c);
						sumsquares_mc += pow((*results)[i](m, c), 2);
					}
					mean_mc /= k;
					
					// calculate standard deviation of coefficient
					// = sqrt(1/k * \sum_{i = 1}^k (x_i \^bar x)^2)
					// <=> sqrt(1/k (\sum_{i = 1}^k x_i - k*\bar x^2))
					coefficient_stderr_(m, c) = sqrt(abs(sumsquares_mc-k*pow(mean_mc, 2))/(k-1));
					
					// standard-error == standard-deviation/sqrt(k)
					//coefficient_stderr_(m, c) /= sqrt(k);
				}
			}
			
			delete results;
			restoreTrainingResults();
		}


		void RegressionValidation::bootstrap(int k, bool restore)
		{ 
			bootstrap(k, NULL, restore);
		}


		void RegressionValidation::bootstrap(int k, MatrixVector* results, bool restore)
		{
			if (model_->data->descriptor_matrix_.size() == 0 || model_->data->Y_.size() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be fetched from input-files by QSARData before bootstrapping can be done!"); 
			}
			if (restore) backupTrainingResults(); 
			
			
			Q2_ = 0; double r2 = 0; max_error_ = 0;
			int N = model_->data->descriptor_matrix_[0].size();
			int no_descriptors = model_->data->descriptor_matrix_.size();
			if (!model_->descriptor_IDs_.empty())
			{
				no_descriptors = model_->descriptor_IDs_.size();
			}
			
			boost::mt19937 rng(PreciseTime::now().getMicroSeconds());
			
			for (int i = 0; i < k; i++) // create and evaluate k bootstrap samples
			{
				vector<int> sample_substances(N, 0); // numbers of occurences of substances within this sample
				
				/// create training matrix and train the model_
				model_->descriptor_matrix_.resize(N, no_descriptors);
				model_->Y_.resize(N, model_->data->Y_.size());
				for (int j = 0; j < N; j++)
				{
					int pos = rng() % N;
					setTrainingLine(j, pos);
					sample_substances[pos]++;
				}
				model_->train(); // train the model_ on current bootstrap sample
				
				
				/// find size of test data set
				int test_size = 0;
				for (int j = 0; j < N; j++) 
				{
					if (sample_substances[j] > 0) 
					{
						continue;
					}
					test_size++;
				}
				test_substances_.resize(test_size);
				test_Y_.resize(test_size, model_->data->Y_.size());
				
				
				/// create test data set and calculate Q^2
				int test_line = 0;
				for (int j = 0; j < N; j++)
				{
					if (sample_substances[j] == 0) 
					{	
						setTestLine(test_line, j);
						test_line++;
					}
				}
				if (results != NULL){ results->push_back(*regr_model_->getTrainingResult()); }
				testAllSubstances(0);
				Q2_ += quality_;
				
				/// create test data set and calculate R^2
				test_substances_.resize(N);
				test_Y_.resize(N, model_->data->Y_.size());
				test_line = 0;
				for (int j = 0; j < N; j++)  
				{
					while (sample_substances[j] > 0) // insert substance as often as it occurs in the training data set 
					{	
						setTestLine(test_line, j);
						test_line++;
						sample_substances[j]--;
					}
				}
				testAllSubstances(0);
				//r2 += 1-(ssE_/(ssE_+ssR_));
				r2 += quality_;
			}
			
			Q2_ = Q2_/k;
			r2 = r2/k;
			
			Q2_ = 0.632*Q2_ + 0.368*r2;
				
			if (restore) restoreTrainingResults(); 
		}


		const Eigen::MatrixXd& RegressionValidation::yRandomizationTest(int runs, int k)
		{
			if (model_->data->descriptor_matrix_.size() == 0 || model_->data->Y_.size() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be fetched from input-files by QSARData object before response permutation tests can be done!"); 
			}	
			
			backupTrainingResults();
			vector<vector<double> > dataY_backup = model_->data->Y_;
						
			yRand_results_.resize(runs, 2);
			yRand_results_.setConstant(-1);

			for (int i = 0; i < runs; i++)
			{
				yRand(); // randomize all columns of Y_
				crossValidation(k, NULL, 0);
				model_->readTrainingData();
				model_->train();
				testInputData(0);	
				yRand_results_(i, 0) = R2_;
				yRand_results_(i, 1) = Q2_;
			}	
			
			restoreTrainingResults();
			QSARData* data = const_cast <QSARData*> (model_->data);
			data->Y_ = dataY_backup;
			
			return yRand_results_;
		}

		void RegressionValidation::calculateQOF()
		{
			quality_ = (ssY_-ssE_)/ssY_;	
		}


		double RegressionValidation::getQ2()
		{
			return Q2_;
		}


		double RegressionValidation::getFcv()
		{
			return F_cv_;
		}


		double RegressionValidation::getFregr()
		{
			return F_regr_;
		}


		double RegressionValidation::getMaxError()
		{ 
			return max_error_;
		}


		double RegressionValidation::getR2()
		{
			return R2_;
		}


		double RegressionValidation::getCVRes()
		{
			//return getQ2();
			return (this->*predQualFetcher_)();
		}


		double RegressionValidation::getFitRes()
		{
			return (this->*fitQualFetcher_)();
		}


		void RegressionValidation::selectStat(int s)
		{
			predQualFetcher_ = &RegressionValidation::getQ2;
			fitQualFetcher_ = &RegressionValidation::getR2;
			
			if (s == 0)
			{
				validation_statistic_ = 0;
				qualCalculation = &RegressionValidation::calculateQOF;
			}
			else 
			{
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "RegressionValidation error", "Validation statistic "+String(s)+" is unknown!");
			}
		}
						
						
		void RegressionValidation::setCVRes(double d)
		{
			setQ2(d);
		}


		const Eigen::MatrixXd* RegressionValidation::getCoefficientStdErrors()
		{
			return &coefficient_stderr_;
		}


		void RegressionValidation::setCoefficientStdErrors(const Eigen::MatrixXd* sterr)
		{
			coefficient_stderr_ = *sterr;	
		}


		void RegressionValidation::saveToFile(string filename) const
		{
			saveToFile(filename, R2_, Q2_, coefficient_stderr_, yRand_results_);	
		}

		void RegressionValidation::saveToFile(string filename, const double& r2, const double& q2, const Eigen::MatrixXd& coefficient_stddev, const Eigen::MatrixXd& yRand_results) const
		{
			ofstream out(filename.c_str());
			
			Registry reg;
			out<<"# used quality statistic: "<<reg.getRegressionStatisticName(validation_statistic_)<<endl<<endl;	
			out << "Fit to training data = "<<r2<<endl;
			out << "Predictive quality = "<<q2<<endl;
			
			if (coefficient_stddev.cols() > 0)
			{
				out<<endl;
				out<<"[Coefficient stddev]"<<endl;
				out<<"dimensions = "<<coefficient_stddev.rows()<<" "<<coefficient_stddev.cols()<<endl;
				out<<coefficient_stddev<<endl;
			}
			if (yRand_results.cols() > 0)
			{
				out<<endl;
				out<<"[Response Permutation]"<<endl;
				out<<"dimensions = "<<yRand_results.rows()<<" "<<yRand_results.cols()<<endl;
				out<<yRand_results<<endl;
			}
		}


		void RegressionValidation::readFromFile(string filename)
		{
			ifstream in(filename.c_str()); 
			
			bool stddev_section = 0;
			bool yRand_section = 0;
			
			while (in)
			{
				String line;
				getline(in, line);
				line.trimLeft();
				if(line=="" || line.hasPrefix("#") || line.hasPrefix("//") || line.hasPrefix("%"))
				{
					continue;
				}
				if (stddev_section)
				{
					if (line.hasPrefix("dimensions"))
					{
						line = ((String)line.after("="));
						unsigned int no_rows = line.getField(0).toInt();
						unsigned int no_cols = line.getField(1).toInt();
						model_->readMatrix(coefficient_stderr_, in, no_rows, no_cols);
					}
					stddev_section = 0;
					
				}
				else if (yRand_section)
				{
					if (line.hasPrefix("dimensions"))
					{
						line = ((String)line.after("="));
						unsigned int no_rows = line.getField(0).toInt();
						unsigned int no_cols = line.getField(1).toInt();
						model_->readMatrix(yRand_results_, in, no_rows, no_cols);
					}
					yRand_section = 0;
				}
				if (line.hasPrefix("Fit to training data"))
				{
					R2_ = ((String)line.after("=")).trimLeft().toDouble();
				}
				else if (line.hasPrefix("Predictive quality"))
				{
					Q2_ = ((String)line.after("=")).trimLeft().toDouble();
				}
				else if (line.hasPrefix("[Coefficient stddev]"))
				{
					yRand_section = 0;
					stddev_section = 1;
				}
				else if (line.hasPrefix("[Response Permutation]"))
				{
					yRand_section = 1;
					stddev_section = 0;
				}
			}
		}
	}
}