1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: simpleBase.C,v 1.2.28.2 2007-03-19 21:43:47 bertsch Exp $
//
#include <BALL/QSAR/simpleBase.h>
#include <BALL/KERNEL/forEach.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/STRUCTURE/smartsMatcher.h>
#include <BALL/QSAR/ringPerceptionProcessor.h>
#include <BALL/QSAR/aromaticityProcessor.h>
#include <BALL/SYSTEM/file.h>
#include <BALL/SYSTEM/path.h>
using namespace std;
#define BALL_QSAR_ATOMIC_POLARIZABILITIES_FILE "/atomic_polarizabilities.data"
namespace BALL
{
SimpleBase::SimpleBase()
: Descriptor()
{
data_folder_ = "QSAR/";
}
SimpleBase::SimpleBase(const SimpleBase& sb)
: Descriptor(sb)
{
data_folder_ = "QSAR/";
}
SimpleBase::SimpleBase(const String& name)
: Descriptor(name)
{
data_folder_ = "QSAR/";
}
SimpleBase::SimpleBase(const String& name, const String& unit)
: Descriptor(name, unit)
{
data_folder_ = "QSAR/";
}
SimpleBase::~SimpleBase()
{
}
void SimpleBase::setDataFolder(const char* folder)
{
data_folder_ = folder;
}
SimpleBase& SimpleBase::operator = (const SimpleBase& sb)
{
setUnit(sb.getUnit());
setName(sb.getName());
data_folder_ = sb.data_folder_;
return *this;
}
double SimpleBase::calcPrincipalMomentOfInertia_(double& pmi_x, double& pmi_y, double& pmi_z, AtomContainer& ac)
{
Vector3 sum(0.0, 0.0, 0.0);
double sum_weight = 0;
for (AtomConstIterator i=ac.beginAtom();i!=ac.endAtom();++i)
{
double weight = i->getElement().getAtomicWeight();
Vector3 pos = i->getPosition();
Vector3 tmp(pos[0]*weight, pos[1]*weight, pos[2]*weight);
sum += tmp;
sum_weight += weight;
}
Vector3 mid(sum[0] / sum_weight, sum[1] / sum_weight, sum[2] / sum_weight);
double pmi = 0;
for (AtomConstIterator i = ac.beginAtom(); i != ac.endAtom(); ++i)
{
double weight = i->getElement().getAtomicWeight();
Vector3 atom = i->getPosition();
pmi_x += pow(atom[0] - mid[0], 2) * weight;
pmi_y += pow(atom[1] - mid[1], 2) * weight;
pmi_z += pow(atom[2] - mid[2], 2) * weight;
pmi += atom.getSquareDistance(mid) * weight;
}
return pmi;
}
bool SimpleBase::isValid_(AtomContainer& ac)
{
static HashMap<Handle, PreciseTime> mod_times;
PreciseTime last_mod = ac.getModificationTime();
Handle mol_handle = ac.getHandle();
if (mod_times.has(mol_handle))
{
if (mod_times[mol_handle] == last_mod)
{
return true;
}
else
{
mod_times[mol_handle] = last_mod;
return false;
}
}
else
{
mod_times.insert(std::make_pair(mol_handle, last_mod));
return false;
}
}
void SimpleBase::computeAllDescriptors(AtomContainer& ac)
{
if (!isValid_(ac))
{
calculate_(ac);
}
}
void SimpleBase::calculate_(AtomContainer& ac)
{
// ring processing
vector<vector<Atom*> > sssr;
RingPerceptionProcessor rpp;
Size size_of_sssr = rpp.calculateSSSR(sssr, ac);
// the size of the SSSR
ac.setProperty("SizeOfSSSR", (double)size_of_sssr);
// aromatic processing
AromaticityProcessor aro;
aro.aromatize(sssr, ac);
// pmi calculator
double pmi(0), pmi_x(0), pmi_y(0), pmi_z(0);
pmi = calcPrincipalMomentOfInertia_(pmi_x, pmi_y, pmi_z, ac);
ac.setProperty("PrincipalMomentOfInertia", pmi);
ac.setProperty("PrincipalMomentOfInertiaX", pmi_x);
ac.setProperty("PrincipalMomentOfInertiaY", pmi_y);
ac.setProperty("PrincipalMomentOfInertiaZ", pmi_z);
// 1. part counts atoms (not counting aromatic atoms(?))
// simple array to store the numbers of atoms (53 because iodine has highest number)
// [0] holds the number of atoms
Size num_elem[Element::NUMBER_OF_ELEMENTS];
Size num_heavy_atoms(0), num_h_acc_atoms(0), num_h_don_atoms(0), num_aromatic_atoms(0), num_hydrophobic_atoms(0);
double formal_charges(0), mol_weight(0), atom_polarizabilities(0);
for (Size i = 0; i < Element::NUMBER_OF_ELEMENTS; i++)
{
num_elem[i] = 0;
}
// donors are hydrogen of amino or hydrogen of hydroxyl
//static Expression ex_don("element(O) AND connectedTo((C)) AND connectedTo((H)) OR
// element(N) AND connectedTo((H))");
// acceptors are carbonyl oxygens, hydroxyl oxygen, amino nitrogen and flourine
//static Expression ex_acc("element(O) AND doubleBonds((C)) OR
// element(O) AND connectedTo((C)(H)) OR
// element(F)");
SmartsMatcher smarts_matcher;
String smarts_h_don("[$(O(#1)C),$(N(#1))]");
String smarts_h_acc("[$(O=C),$(O#1),F]");
HashSet<const Atom*> h_bond_donors, h_bond_acceptors;
SmartsMatcher::Match matchings;
Molecule* mol = static_cast<Molecule*>(&ac);
smarts_matcher.match(matchings, *mol, smarts_h_don);
for (SmartsMatcher::Match::const_iterator it1 = matchings.begin(); it1 != matchings.end(); ++it1)
{
for (set<const Atom*>::const_iterator it2 = it1->begin(); it2 != it1->end(); ++it2)
{
h_bond_donors.insert(*it2);
}
}
matchings.clear();
smarts_matcher.match(matchings, *mol, smarts_h_acc);
for (SmartsMatcher::Match::const_iterator it1 = matchings.begin(); it1 != matchings.end(); ++it1)
{
for (set<const Atom*>::const_iterator it2 = it1->begin(); it2 != it1->end(); ++it2)
{
h_bond_acceptors.insert(*it2);
}
}
for (AtomConstIterator a_it = ac.beginAtom(); a_it != ac.endAtom(); a_it++)
{
// elements
num_elem[a_it->getElement().getAtomicNumber()]++;
num_elem[0]++;
mol_weight += a_it->getElement().getAtomicWeight();
// heavy atoms
if (a_it->getElement().getAtomicNumber() > 1)
{
num_heavy_atoms++;
}
if (h_bond_donors.has(&*a_it))
{
num_h_don_atoms++;
}
if (h_bond_acceptors.has(&*a_it))
{
num_h_acc_atoms++;
}
if (isHydrophobic_(&(*a_it)))
{
num_hydrophobic_atoms++;
}
formal_charges += a_it->getCharge();
atom_polarizabilities += getAtomicPolarizability_(a_it->getElement().getAtomicNumber());
if (a_it->getProperty("IsAromatic").getBool())
{
++num_aromatic_atoms;
}
}
// calc info content Descriptor (mean)
double atom_info_content(0);
for (int i=1;i<Element::NUMBER_OF_ELEMENTS;i++)
{
if (num_elem[i] != 0)
{
double p_i = ((double)num_elem[i])/((double)num_elem[0]);
atom_info_content += -p_i * 3.3219280948873626 * log10(p_i);
}
}
// write the data in the ac properties
ac.setProperty("NumberOfAtoms", (double)num_elem[0]);
ac.setProperty("NumberOfHydrogen", (double)num_elem[1]);
ac.setProperty("NumberOfBoron", (double)num_elem[5]);
ac.setProperty("NumberOfCarbon", (double)num_elem[6]);
ac.setProperty("NumberOfNitrogen", (double)num_elem[7]);
ac.setProperty("NumberOfOxygen", (double)num_elem[8]);
ac.setProperty("NumberOfFlourine", (double)num_elem[9]);
ac.setProperty("NumberOfPhosphorus", (double)num_elem[15]);
ac.setProperty("NumberOfSulfur", (double)num_elem[16]);
ac.setProperty("NumberOfChlorine", (double)num_elem[17]);
ac.setProperty("NumberOfBromine", (double)num_elem[35]);
ac.setProperty("NumberOfIodine", (double)num_elem[53]);
ac.setProperty("FormalCharge", formal_charges);
ac.setProperty("NumberOfHydrogenBondAcceptors", (double)num_h_acc_atoms);
ac.setProperty("NumberOfHydrogenBondDonors", (double)num_h_don_atoms);
ac.setProperty("NumberOfHydrophobicAtoms", (double)num_hydrophobic_atoms);
ac.setProperty("NumberOfHeavyAtoms", (double)num_heavy_atoms);
ac.setProperty("MeanAtomInformationContent", atom_info_content);
ac.setProperty("MolecularWeight", mol_weight);
ac.setProperty("NumberOfAromaticAtoms", (double)num_aromatic_atoms);
// 2. part count bonds
Size single_bonds(0), double_bonds(0), triple_bonds(0), aromatic_bonds(0),
num_of_bonds(0), num_heavy_bonds(0), num_rot_single_bonds(0), num_rot_bonds(0);
double bond_polarizabilities(0);
AtomConstIterator a_it = ac.beginAtom();
Atom::BondConstIterator b_it = a_it->beginBond();
BALL_FOREACH_BOND (ac, a_it, b_it)
{
switch (b_it->getOrder())
{
case Bond::ORDER__SINGLE : single_bonds++; break;
case Bond::ORDER__DOUBLE : double_bonds++; break;
case Bond::ORDER__TRIPLE : triple_bonds++; break;
case Bond::ORDER__AROMATIC : aromatic_bonds++; break;
case Bond::ORDER__UNKNOWN : break;
}
num_of_bonds++;
// rotatable bonds
const Atom* a1 = b_it->getFirstAtom();
const Atom* a2 = b_it->getSecondAtom();
short an1 = a1->getElement().getAtomicNumber();
short an2 = a2->getElement().getAtomicNumber();
// testing atoms of ring memberships, bc SSSR marks not all bonds as ring bonds!
if (a1->countBonds() > 1 && a2->countBonds() > 1 &&
!(a1->getProperty("InRing").getBool() && a2->getProperty("InRing").getBool()))
{
if (b_it->getOrder() == Bond::ORDER__SINGLE)
{
num_rot_single_bonds++;
}
num_rot_bonds++;
}
// heavy bonds
if (an1 > 1 && an2 > 1)
{
num_heavy_bonds++;
}
// atomic polarizabilities
bond_polarizabilities += fabs(getAtomicPolarizability_(b_it->getFirstAtom()->getElement().getAtomicNumber()) -
getAtomicPolarizability_(b_it->getSecondAtom()->getElement().getAtomicNumber()));
}
//write the bond data in the ac properties
ac.setProperty("NumberOfSingleBonds", (double)single_bonds);
ac.setProperty("NumberOfDoubleBonds", (double)double_bonds);
ac.setProperty("NumberOfTripleBonds", (double)triple_bonds);
ac.setProperty("NumberOfAromaticBonds", (double)aromatic_bonds);
ac.setProperty("NumberOfBonds", (double)num_of_bonds);
ac.setProperty("NumberOfHeavyBonds", (double)num_heavy_bonds);
ac.setProperty("NumberOfRotatableBonds", (double)num_rot_bonds);
ac.setProperty("NumberOfRotatableSingleBonds", (double)num_rot_single_bonds);
ac.setProperty("AtomicPolarizabilities", atom_polarizabilities);
ac.setProperty("BondPolarizabilities", bond_polarizabilities);
}
bool SimpleBase::isHydrophobic_(const Atom* atom) const
{
if (atom->getElement() == PTE[Element::C])
{
Atom::BondConstIterator b_it(atom->beginBond());
for (; b_it != atom->endBond(); ++b_it)
{
if (b_it->getBoundAtom(*atom)->getElement() != PTE[Element::C] &&
b_it->getBoundAtom(*atom)->getElement() != PTE[Element::H])
{
return false;
}
}
}
else
{
return false;
}
return true;
}
void SimpleBase::readAtomicPolarizabilities_(vector<float>& atomic_polarizabilties)
{
Path path;
String filename = path.find(data_folder_+BALL_QSAR_ATOMIC_POLARIZABILITIES_FILE);
// if filename is empty the file could not be found
if (filename == "")
{
throw Exception::FileNotFound(__FILE__, __LINE__, data_folder_+BALL_QSAR_ATOMIC_POLARIZABILITIES_FILE);
}
File pol_file(filename);
// skip comment line
pol_file.ignore(1000, '\n');
// read the polarizability values
float apol(0);
while (pol_file.good())
{
pol_file >> apol;
atomic_polarizabilties.push_back(apol);
}
}
float SimpleBase::getAtomicPolarizability_(int atomic_number)
{
static vector<float> a_pols;
if (a_pols.empty())
{
readAtomicPolarizabilities_(a_pols);
}
if (atomic_number > 0 && atomic_number < (int)a_pols.size())
{
return a_pols[atomic_number - 1];
}
else
{
Log.error() << "SimpleBase::getAtomicPolarizability: cannot find polarizability for Element " <<
atomic_number << " check '" << BALL_QSAR_ATOMIC_POLARIZABILITIES_FILE << "'!" << endl;
}
// here we return 0, because unknown atom types are considered not to contribute
// to the polarizability, mostly this occurs when the atom type is set to 0 from the file parser
return 0;
}
} // namespace BALL
|