1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/snBModel.h>
using namespace std;
namespace BALL
{
namespace QSAR
{
const double SNBModel::sqrt2Pi_ = sqrt(2*BALL::Constants::PI);
SNBModel::SNBModel(const QSARData& q) : BayesModel(q)
{
type_="snB";
mean_.resize(0);
stddev_.resize(0);
}
SNBModel::~SNBModel()
{
}
void SNBModel::train()
{
if (descriptor_matrix_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!");
}
readLabels();
// map values of Y to their index
map<int, unsigned int> label_to_pos;
for (unsigned int i = 0; i < labels_.size(); i++)
{
label_to_pos.insert(make_pair(labels_[i], i));
}
mean_.resize(Y_.cols());
stddev_.resize(Y_.cols());
no_substances_.clear();
no_substances_.resize(labels_.size(), 0);
for (int act = 0; act < Y_.cols(); act++)
{
// calculate mean and stddev of each feature for _each_ class
mean_[act].resize(labels_.size(), descriptor_matrix_.cols());
stddev_[act].resize(labels_.size(), descriptor_matrix_.cols());
mean_[act].setZero(); stddev_[act].setZero();
for (int i = 0; i < descriptor_matrix_.cols(); i++)
{
vector<double> v0(0, 0);
v0.reserve(descriptor_matrix_.rows());
vector<vector<double> > class_values(labels_.size(), v0);
// sort values of current feature into the respective vector (one for each class)
for (int j = 0; j < descriptor_matrix_.rows(); j++)
{
unsigned int index = label_to_pos.find((int)Y_(j, act))->second;
class_values[index].push_back(descriptor_matrix_(j, i));
if (act == 0 && i == 1) no_substances_[index]++;
}
// calculate mean and stddev for current feature for all classes
for (unsigned int j = 0; j < labels_.size(); j++)
{
mean_[act](j, i) = Statistics::getMean(class_values[j]);
stddev_[act](j, i) = Statistics::getStddev(class_values[j], mean_[act](j, i));
}
}
}
}
Eigen::VectorXd SNBModel::predict(const vector<double> & substance, bool transform)
{
if (mean_.empty())
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained before it can predict the activitiy of substances!");
}
Eigen::VectorXd s = getSubstanceVector(substance, transform);
unsigned int no_activities = mean_.size();
unsigned int no_classes = mean_[0].rows();
unsigned int no_features = mean_[0].cols();
Eigen::VectorXd result(no_activities);
result.setZero();
for (unsigned int act = 0; act < no_activities; act++)
{
vector<double> d(no_classes, 0);
vector<vector<double> > probabilities (no_features, d);
vector<double> pdf_sums(no_features, 0);
// calculate probability-density-function value for each given feature value
for (unsigned int i = 0; i < no_features; i++)
{
double x = s[i];
for (unsigned int j = 0; j < no_classes; j++)
{
double stddev = stddev_[act](j, i);
if (stddev == 0) stddev = 0.000001; // zero is not allowed by the below equation
probabilities[i][j] = (1/(stddev*sqrt2Pi_)) * exp(-pow((x-mean_[act](j, i)), 2)/(2*stddev*stddev));
pdf_sums[i] += probabilities[i][j];
}
}
// convert probability-density values to probabilities;
// then calculate probability for each class by muliplying the probabilities for each feature value;
// finally find most probable class
vector<double> substance_prob(no_classes, 1); // the prob for the given subst. to be in each of the classes
double max = 0;
double second_best = 0;
int best_label = labels_[0];
for (unsigned int i = 0; i < no_features; i++)
{
for (unsigned int j = 0; j < no_classes; j++)
{
probabilities[i][j] /= pdf_sums[i];
substance_prob[j] *= probabilities[i][j];
if (i == no_features-1 && substance_prob[j] > max)
{
second_best = max;
max = substance_prob[j];
best_label = labels_[j];
}
}
}
if (max >= second_best+min_prob_diff_)
{
result(act) = best_label;
}
else
{
result(act) = undef_act_class_id_;
}
}
return result;
}
vector<double> SNBModel::calculateProbabilities(int activitiy_index, int feature_index, double feature_value)
{
if (mean_.empty())
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Model must be trained before a probability for a given feature value can be calculated!");
}
int no_features = mean_[0].cols();
int no_classes = mean_[0].rows();
if (activitiy_index >= (int)stddev_.size() || feature_index >= no_features || activitiy_index < 0 || feature_index < 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Index of bound for parameters given to SNBModel::calculateProbability() !");
}
double pdf_sum = 0; // sum of all pdf-values for the given feature-value
vector<double> pdf_values(no_classes);
for (int i = 0; i < no_classes; i++) // calculate pdf-value for given feature-value to be dervied from each class
{
double stddev = stddev_[activitiy_index](i+1, feature_index+1);
if (stddev == 0) stddev = 0.000001; // zero is not allowed by the below equation
pdf_values[i] = (1/(stddev*sqrt2Pi_)) * exp(-pow((feature_value-mean_[activitiy_index](i+1, feature_index+1)), 2)/(2*stddev*stddev));
pdf_sum += pdf_values[i];
}
for (int i = 0; i < no_classes; i++) // convert pdf-values to probabilities
{
pdf_values[i] /= pdf_sum;
}
return pdf_values;
}
bool SNBModel::isTrained()
{
unsigned int sel_features = descriptor_IDs_.size();
if (sel_features == 0)
{
sel_features = data->getNoDescriptors();
}
return !mean_.empty() && (unsigned int)mean_[0].cols() == sel_features;
}
int SNBModel::getNoResponseVariables()
{
if (!isTrained()) return 0;
else return mean_.size();
}
vector<double> SNBModel::getParameters() const
{
vector<double> d;
d.push_back(min_prob_diff_);
d.push_back(undef_act_class_id_);
return d;
}
void SNBModel::setParameters(vector<double>& v)
{
if (!v.empty() && v.size() != 2)
{
String c = "Wrong number of model parameters! Needed: 2;";
c = c+" given: "+String(v.size());
throw Exception::ModelParameterError(__FILE__, __LINE__, c.c_str());
}
if (v.size() == 2)
{
min_prob_diff_ = v[0];
undef_act_class_id_ = v[1];
}
}
void SNBModel::saveToFile(string filename)
{
bool trained = !mean_.empty();
ofstream out(filename.c_str());
bool centered_data = 0;
bool centered_y = 0;
if (descriptor_transformations_.cols() != 0)
{
centered_data = 1;
if (y_transformations_.cols() != 0)
{
centered_y = 1;
}
}
int sel_features = descriptor_IDs_.size();
if (sel_features == 0)
{
sel_features = data->getNoDescriptors();
}
int no_y = mean_.size();
if (no_y == 0) no_y = y_transformations_.cols(); // correct no because transformation information will have to by read anyway when reading this model later ...
out<<"# model-type_\tno of featues in input data\tselected featues\tno of response variables\tcentered descriptors?\tno of classes\ttrained?"<<endl;
out<<type_<<"\t"<<data->getNoDescriptors()<<"\t"<<sel_features<<"\t"<<no_y<<"\t"<<centered_data<<"\t"<<no_substances_.size()<<"\t"<<trained<<"\n\n";
saveModelParametersToFile(out);
saveDescriptorInformationToFile(out);
if (!trained) return;
saveClassInformationToFile(out);
// write mean_ matrices
for (unsigned int i = 0; i < mean_.size(); i++)
{
out<<mean_[i]<<endl;
}
// write stddev_ matrices
for (unsigned int i = 0; i < stddev_.size(); i++)
{
out<<stddev_[i]<<endl;
}
}
void SNBModel::readFromFile(string filename)
{
ifstream input(filename.c_str());
if (!input)
{
throw BALL::Exception::FileNotFound(__FILE__, __LINE__, filename);
}
String line0;
getline(input, line0); // skip comment line
getline(input, line0); // read read line containing model specification
if (line0.getField(0, "\t") != type_)
{
String e = "Wrong input data! Use training data file generated by a ";
e = e + type_ + " model !";
throw Exception::WrongDataType(__FILE__, __LINE__, e.c_str());
}
int no_descriptors = line0.getField(2, "\t").toInt();
int no_y = line0.getField(3, "\t").toInt();
bool centered_data = line0.getField(4, "\t").toInt();
int no_classes = line0.getField(5, "\t").toInt();
bool trained = line0.getField(6, "\t").toBool();
//int no_subst = line0.getField(6, "\t").toInt();
substance_names_.clear();
getline(input, line0); // skip empty line
readModelParametersFromFile(input);
readDescriptorInformationFromFile(input, no_descriptors, centered_data);
if (!trained)
{
mean_.resize(0);
return;
}
readClassInformationFromFile(input, no_classes);
mean_.resize(no_y);
for (int c = 0; c < no_y; c++) // read all mean-vector matrices
{
readMatrix(mean_[c], input, no_classes, no_descriptors);
getline(input, line0); // skip empty line
}
stddev_.resize(no_y);
for (int act = 0; act < no_y; act++) // read all stddev matrices (each containing a stddev for each feature for each class)
{
readMatrix(stddev_[act], input, no_classes, no_descriptors);
getline(input, line0); // skip empty line
}
}
}
}
|