1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#include <BALL/QSAR/statistics.h>
#include <iostream>
#include <map>
namespace BALL
{
namespace QSAR
{
void Statistics::scaling(vector<vector<double> >& m)
{
for (unsigned int i = 0; i < m.size(); i++)
{
scaling(m[i]);
}
}
void Statistics::scaling(vector<double>& v)
{
double std = sqrt(getVariance(v));
// standard deviation = 0, i.e. all values of this vector are identical, so do nothing!
if (std < 5*std::numeric_limits < double > ::epsilon()) return;
for (unsigned int i = 0; i < v.size(); i++)
{
v[i] /= std;
}
}
void Statistics::centering(vector<vector<double> >& m)
{
for (unsigned int i = 0; i < m.size(); i++)
{
centering(m[i]);
}
}
void Statistics::centering(vector<double>& v)
{
double mean = getMean(v);
double std = sqrt(getVariance(v, mean));
// standard deviation = 0, i.e. all values of this vector are identical, so do nothing!
if (std < 5*std::numeric_limits < double > ::epsilon()) return;
for (unsigned int i = 0; i < v.size(); i++)
{
v[i] = (v[i]-mean)/std;
}
}
void Statistics::centering(vector<double>& v, double& mean, double& std)
{
mean = getMean(v);
std = sqrt(getVariance(v, mean));
// standard deviation = 0, i.e. all values of this vector are identical, so do nothing!
if (std < 5*std::numeric_limits < double > ::epsilon()) return;
for (unsigned int i = 0; i < v.size(); i++)
{
v[i] = (v[i]-mean)/std;
}
}
double Statistics::getVariance(const vector<double>& v, double mean)
{
if (mean == -1) { mean = getMean(v); }
double sum_of_squares = 0;
for (unsigned int i = 0; i < v.size(); i++)
{
sum_of_squares += (v[i]-mean)*(v[i]-mean);
}
return sum_of_squares/(v.size()-1);
}
double Statistics::getStddev(const vector<double>& v, double mean)
{
double var = getVariance(v, mean);
return sqrt(var);
}
double Statistics::getCovariance(const vector<double>& v1, const vector<double>& v2, double mean1, double mean2)
{
if (mean1 == -1) {mean1 = getMean(v1); }
if (mean2 == -1) {mean2 = getMean(v2); }
double sum_of_squares = 0;
for (unsigned int i = 0; i < v1.size() && i < v2.size(); i++)
{
sum_of_squares += (v1[i]-mean1)*(v2[i]-mean2);
}
return sum_of_squares/(v1.size()-1);
}
double Statistics::getMean(const vector<double>& v)
{
double sum = 0;
for (unsigned int i = 0; i < v.size(); i++)
{
sum += v[i];
}
return sum/v.size();
}
double Statistics::calculateRankCorrelation(vector<double>& observed_values, vector<double>& expected_values)
{
if(observed_values.size()!=expected_values.size())
{
throw BALL::Exception::GeneralException(__FILE__,__LINE__,"PropertyPlotter::calculateRankCorrelation() error","Both vectors need to have an identical number of entries for calculation of rank correlation!");
}
std::map<int,double> observed_ranks; // map score to rank
std::map<int,double> expected_ranks;
for(Size i=0; i<observed_values.size(); i++)
{
int value = (int)(observed_values[i]*10);
std::map<int,double>::iterator it=observed_ranks.find(value);
if(it!=observed_ranks.end())
{
it->second++;
}
else
{
observed_ranks.insert(std::make_pair(value,1));
}
}
for(Size i=0; i<expected_values.size(); i++)
{
int value = (int)(expected_values[i]*10);
std::map<int,double>::iterator it=expected_ranks.find(value);
if(it!=expected_ranks.end())
{
it->second++;
}
else
{
expected_ranks.insert(std::make_pair(value,1));
}
}
// replace number of occurences of each score (rounded to precision of 0.1) by its Spearman rank
Size position=1;
for(std::map<int,double>::iterator it=observed_ranks.begin(); it!=observed_ranks.end(); it++, position++)
{
if(it->second==1) it->second=position;
else
{
Size no_entries = (Size)it->second;
int rank_sum=0;
int end_current_score=position+no_entries;
for(Size i=position; i<end_current_score; i++)
{
rank_sum+=i;
}
double rank = rank_sum/((double)no_entries);
it->second = rank;
position+=no_entries-1;
}
}
// replace number of occurences of each score (rounded to precision of 0.1) by its Spearman rank
position=1;
for(std::map<int,double>::iterator it=expected_ranks.begin(); it!=expected_ranks.end(); it++, position++)
{
if(it->second==1) it->second=position;
else
{
Size no_entries = (Size)it->second;
int rank_sum=0;
int end_current_score=position+no_entries;
for(Size i=position; i<end_current_score; i++)
{
rank_sum+=i;
}
double rank = rank_sum/((double)no_entries);
it->second = rank;
position+=no_entries-1;
}
}
double dist_sum=0;
for(Size i=0; i<expected_values.size(); i++)
{
std::map<int,double>::iterator it1=expected_ranks.find((int)(expected_values[i]*10));
std::map<int,double>::iterator it2=observed_ranks.find((int)(observed_values[i]*10));
if(it1==expected_ranks.end() || it2==observed_ranks.end())
{
throw BALL::Exception::GeneralException(__FILE__,__LINE__,"PropertyPlotter::calculateRankCorrelation() error","Stored value could not be found in map!");
}
dist_sum += pow(it1->second-it2->second,2);
}
int n = observed_values.size();
double p = 1-((6*dist_sum)/(n*(n*n-1)));
return p;
}
//---------------- methods for calculating mean, covar, var of matrix-ROWS ----------
double Statistics::getRowCovariance(const vector<vector<double> >& v, int row1, int row2, double mean1, double mean2, std::multiset<int>* features_to_use)
{
if (mean1 == -1) {mean1 = getRowMean(v, row1, features_to_use); }
if (mean2 == -1) {mean2 = getRowMean(v, row2, features_to_use); }
double sum_of_squares = 0;
int size = v.size();
std::multiset<int>::iterator it;
if (features_to_use != 0)
{
it = features_to_use->begin();
size = features_to_use->size();
}
for (unsigned int i = 0; i < v.size(); i++)
{
if (features_to_use != 0 && *it != (int)i) continue;
sum_of_squares += (v[i][row1]-mean1)*(v[i][row2]-mean2);
if (features_to_use != 0) it++;
}
return sum_of_squares/(size-1);
}
double Statistics::getRowMean(const vector<vector<double> >& v, int row, std::multiset<int>* features_to_use)
{
double sum = 0;
int size = v.size();
std::multiset<int>::iterator it;
if (features_to_use != 0)
{
it = features_to_use->begin();
size = features_to_use->size();
}
for (unsigned int i = 0; i < v.size(); i++)
{
if (features_to_use != 0 && *it != (int)i) continue;
sum += v[i][row];
if (features_to_use != 0) it++;
}
return sum/size;
}
double Statistics::getRowVariance(const vector<vector<double> >& v, int row, double mean, std::multiset<int>* features_to_use)
{
if (mean == -1) { mean = getRowMean(v, row, features_to_use); }
double sum_of_squares = 0;
int size = v.size();
std::multiset<int>::iterator it;
if (features_to_use != 0)
{
it = features_to_use->begin();
size = features_to_use->size();
}
for (unsigned int i = 0; i < v.size(); i++)
{
if (features_to_use != 0 && *it != (int)i) continue;
sum_of_squares += (v[i][row]-mean)*(v[i][row]-mean);
if (features_to_use != 0) it++;
}
return sum_of_squares/(size-1);
}
double Statistics::getRowStddev(const vector<vector<double> >& v, int row, double mean, std::multiset<int>* features_to_use)
{
double var = getRowVariance(v, row, mean, features_to_use);
return sqrt(var);
}
// -----------------------------------------------------------------
void Statistics::centering(Eigen::MatrixXd& m)
{
for (int i = 0; i < m.cols(); i++)
{
centering(m, i);
}
}
void Statistics::centering(Eigen::MatrixXd& m, int col)
{
double mean = getMean(m, col);
double std = sqrt(getVariance(m, col, mean));
// standard deviation = 0, i.e. all values of this column are identical, so do nothing!
if (std < 5*std::numeric_limits < double > ::epsilon()) return;
for (int i = 0; i < m.rows(); i++)
{
m(i, col) = (m(i, col)-mean)/std;
}
}
double Statistics::getMean(const Eigen::MatrixXd& m, int col)
{
double sum = 0;
for (int i = 0; i < m.rows(); i++)
{
sum += m(i, col);
}
return sum/m.rows();
}
double Statistics::getVariance(const Eigen::MatrixXd& m, int col, double mean)
{
if (mean == -1) { mean = getMean(m, col); }
double sum_of_squares = 0;
for (int i = 0; i < m.rows(); i++)
{
sum_of_squares += pow(m(i, col)-mean, 2);
}
return sum_of_squares/(m.rows()-1);
}
double Statistics::getStddev(const Eigen::MatrixXd& m, int col, double mean)
{
double d = getVariance(m, col, mean);
return sqrt(d);
}
double Statistics::getCovariance(const Eigen::MatrixXd& m, int col1, int col2, double mean1, double mean2)
{
if (mean1 == -1) {mean1 = getMean(m, col1); }
if (mean2 == -1) {mean2 = getMean(m, col2); }
double sum_of_squares = 0;
for (int i = 0; i < m.rows(); i++)
{
sum_of_squares += (m(i, col1)-mean1)*(m(i, col2)-mean2);
}
return sum_of_squares/(m.rows()-1);
}
double Statistics::sq(const Eigen::MatrixXd& m, int col, double mean)
{
if (mean == -1) { mean = getMean(m, col); }
double sum_of_squares = 0;
for (int i = 0; i < m.rows(); i++)
{
sum_of_squares += pow(m(i, col)-mean, 2);
}
return sum_of_squares;
}
double Statistics::euclNorm(const Eigen::VectorXd& cv)
{
return sqrt(scalarProduct(cv));
}
double Statistics::scalarProduct(const Eigen::VectorXd& cv)
{
return cv.dot(cv);
}
double Statistics::euclDistance(const Eigen::VectorXd& c1, const Eigen::VectorXd& c2)
{
return sqrt(scalarProduct(c1 - c2));
}
//---------------------------
double Statistics::distance(const Eigen::MatrixXd& m, int& row1, int& row2, double& p)
{
double dist = 0;
for (int j = 1; j <= m.cols(); j++)
{
dist += m(row1, j)*m(row2, j);
}
int i_p = static_cast <int> (p);
if (i_p != p) // if a root of dist should be taken, then dist may not be negative
{
dist = fabs(dist);
}
return pow(dist, p);
}
double Statistics::distance(const Eigen::MatrixXd& m1, const Eigen::MatrixXd& m2, int& row1, int& row2, double& p)
{
double dist = m1.row(row1).dot(m2.row(row2));
int i_p = static_cast <int> (p);
if (i_p != p) // if a root of dist should be taken, then dist may not be negative
{
dist = std::abs(dist);
}
return pow(dist, p);
}
double Statistics::distance(const Eigen::MatrixXd& m1, const Eigen::MatrixXd& m2, int& row1, int& row2, String& f, String& g)
{
double dist = 0;
for (int j = 0; j < m1.cols(); j++)
{
String var="";
var = var+"x1="+String(m1(row1, j))+";x2="+String(m2(row2, j))+";";
// cout<<"f = "<<var+f<<endl;
ParsedFunction<double> pf(var+f);
dist += pf(0);
}
String var2 = "";
var2 = var2 + "sum=" + String(dist) + ";";
//cout<<"g = "<<var+g<<endl;
ParsedFunction<double> pf2(var2+g);
return pf2(0);
}
double Statistics::euclDistance(const Eigen::MatrixXd& m1, const Eigen::MatrixXd& m2, int row1, int row2)
{
return euclDistance(m1.row(row1), m2.row(row2));
}
}
}
|