File: vanDerWaalsSlick.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (716 lines) | stat: -rw-r--r-- 21,312 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: vanDerWaals.C,v 1.4 2006/05/27 09:05:23 anker Exp $


#include <BALL/common.h>
#include <BALL/SCORING/COMPONENTS/vanDerWaalsSlick.h>
#include <BALL/MOLMEC/COMMON/assignTypes.h>
#include <BALL/MOLMEC/COMMON/support.h>
#include <BALL/MOLMEC/PARAMETER/templates.h>
#include <BALL/SYSTEM/path.h>

// define a macro for the square function
#define SQR(x) ((x) * (x))

// #define DEBUG 1

namespace BALL
{


	const String VanDerWaalsSlick::Option::VERBOSITY = "verbosity";
	const String VanDerWaalsSlick::Option::VDW_METHOD = "van_der_Waals_method";
	const String VanDerWaalsSlick::Option::VDW_CUT_ON = "van_der_Waals_cut_on";
	const String VanDerWaalsSlick::Option::VDW_CUT_OFF = "van_der_Waals_cut_off";
	const String VanDerWaalsSlick::Option::VDW_SOFTENING_LIMIT = "van_der_Waals_softening_limit";
	const String VanDerWaalsSlick::Option::LENNARD_JONES_FILE = "lennard_jones_file";

	const Size VanDerWaalsSlick::Default::VERBOSITY = 0;
	const Size VanDerWaalsSlick::Default::VDW_METHOD = CALCULATION__FULL_LJ_POTENTIAL;
	const float VanDerWaalsSlick::Default::VDW_CUT_ON = 13.0f;
	const float VanDerWaalsSlick::Default::VDW_CUT_OFF = 15.0f;
	// This option is only in effect if the method supports it
	const float VanDerWaalsSlick::Default::VDW_SOFTENING_LIMIT = 5.0f;
	const String VanDerWaalsSlick::Default::LENNARD_JONES_FILE = "Amber/amber94gly.ini";


	VanDerWaalsSlick::VanDerWaalsSlick()
		:	ScoringComponent()
	{
		// Set the name of this component
		setName("vanDerWaalsSlick");
		// ???
	}


	VanDerWaalsSlick::VanDerWaalsSlick(ScoringComponent& vdw)
		: ScoringComponent(vdw)
	{
		// Set the name of this component
		setName("vanDerWaalsSlick");
		// ???
	}


	VanDerWaalsSlick::VanDerWaalsSlick(ScoringFunction& sf)
		: ScoringComponent(sf)
	{
		// Set the name of this component
		setName("vanDerWaalsSlick");
		// ???
	}


	VanDerWaalsSlick::~VanDerWaalsSlick()
	{
		clear();
	}


	void VanDerWaalsSlick::clear()
	{
		non_bonded_.clear();
	}


	struct SwitchingCutOnOff
	{
		float cutoff_2;
		float cuton_2;
		float inverse_distance_off_on_3;
	};


	bool VanDerWaalsSlick::setup()
	{
		if (getScoringFunction() == 0)
		{
			Log.error() << "VanDerWaalsSlick::setup(): Not bound to a ScoringFunction"
				<< std::endl;
			return(false);
		}

		if (getScoringFunction()->getReceptor() == 0
				|| getScoringFunction()->getLigand() == 0)
		{
			Log.error() << "VanDerWaalsSlick::setup(): Receptor or ligand missing"
				<< std::endl;
			return(false);
		}

		Options options = getScoringFunction()->getOptions();

		// Set the options for this component from the options stored in the
		// ScoringFunction
		String lj_file_name
			= options.setDefault(VanDerWaalsSlick::Option::LENNARD_JONES_FILE,
					VanDerWaalsSlick::Default::LENNARD_JONES_FILE);
		calculation_method_
			= options.setDefaultInteger(VanDerWaalsSlick::Option::VDW_METHOD,
					VanDerWaalsSlick::Default::VDW_METHOD);
		cut_off_vdw_
			= options.setDefaultReal(VanDerWaalsSlick::Option::VDW_CUT_OFF,
					VanDerWaalsSlick::Default::VDW_CUT_OFF);
		cut_on_vdw_
			= options.setDefaultReal(VanDerWaalsSlick::Option::VDW_CUT_ON,
					VanDerWaalsSlick::Default::VDW_CUT_ON);
		scaling_vdw_1_4_ = 2.0;
		softening_limit_
			= options.setDefaultReal(VanDerWaalsSlick::Option::VDW_SOFTENING_LIMIT,
					VanDerWaalsSlick::Default::VDW_SOFTENING_LIMIT);
		verbosity_ = options.setDefaultInteger(VanDerWaalsSlick::Option::VERBOSITY,
				VanDerWaalsSlick::Default::VERBOSITY);

		// Copy Receptor and ligand into a system for later reference
		vdw_receptor_
			= new Molecule(*(getScoringFunction()->getReceptor()), true);
		vdw_system_.insert(*vdw_receptor_);
		vdw_ligand_
			= new Molecule(*(getScoringFunction()->getLigand()), true);
		vdw_system_.insert(*vdw_ligand_);

		// Find the parameter file
		Path path;
		String tmp = path.find(lj_file_name);
		if (tmp != "") lj_file_name = tmp;

		// Read parameters and initialise them
		ForceFieldParameters parameters(lj_file_name);
		parameters.init();

		tmp = path.find("Amber/amber94.types");
		if (tmp == "") tmp = "Amber/amber94.types";
		AssignTypeNameProcessor assign_type_names(tmp, false);
		vdw_system_.apply(assign_type_names);

		AssignTypeProcessor type_proc(parameters.getAtomTypes());
		vdw_system_.apply(type_proc);

		Templates templates;
		templates.extractSection(parameters, "ChargesAndTypeNames");
		// Assign force field parameters without overwriting existing types
		templates.assign(vdw_system_, true, false);

		// Save unassigned atoms for creating meaningful error reports
		HashSet<const Atom*>::ConstIterator unassigned_it
			= type_proc.getUnassignedAtoms().begin();
		for (; unassigned_it != type_proc.getUnassignedAtoms().end();
				unassigned_it++)
		{
			getScoringFunction()->getUnassignedAtoms().insert(*unassigned_it);
		}

		// HashSet<const Atom*>::ConstIterator unassigned_it
		unassigned_it
			= templates.getUnassignedAtoms().begin();
		for (; unassigned_it != templates.getUnassignedAtoms().end(); unassigned_it++)
		{
			if (verbosity_ > 1)
			{
				Log.warn() << "VanDerWaalsSlick::setup(): unassigned atom "
					<< (*unassigned_it)->getFullName() << " with type "
					<< (*unassigned_it)->getTypeName()
					<<  " (" << (*unassigned_it)->getType() << ")"
					<< std::endl;
			}
			getScoringFunction()->getUnassignedAtoms().insert(*unassigned_it);
		}

		// Read the parameters for the VDW calculation
		bool result = lennard_jones_.extractSection(parameters, "LennardJones");
		if (!result)
		{
			return(false);
		}
		result = hydrogen_bond_.extractSection(parameters, "HydrogenBonds");
		if (!result)
		{
			return(false);
		}

		if (verbosity_ > 20)
		{
			AtomIterator it = vdw_system_.beginAtom();
			for (; +it; ++it)
			{
				Log.info() << "type of "
					<< it->getFullName() << " is "
					<< it->getTypeName() <<  " (" << it->getType() << ")"
					<< std::endl;
			}
		}

		return(true);
	}


	Size VanDerWaalsSlick::createNonBondedList_(const ForceField::PairVector& atom_pair_vector)
	{
		// The following piece of code is stolen and adapted from
		// AmberNonBonded::buildVectorOfNonBondedAtomPairs
		non_bonded_.clear();
		non_bonded_.reserve(atom_pair_vector.size());
		is_hydrogen_bond_.clear();
		is_hydrogen_bond_.reserve(atom_pair_vector.size());

		vector<Position> non_torsions;
		non_torsions.reserve(atom_pair_vector.size());

		LennardJones::Data lj_tmp;
		Atom*	atom1;
		Atom* atom2;
		Atom::Type	type_atom1;
		Atom::Type  type_atom2;

		// Iterate and search torsions, fill the atom pairs that have a torsion
		// in non_bonded_
		for (Position i = 0; i < (Size)atom_pair_vector.size(); ++i)
		{
			atom1 = atom_pair_vector[i].first;
			atom2 = atom_pair_vector[i].second;
			if (!atom1->isVicinal(*atom2))
			{
				// store the non-torsions for later appending in the non_torsions
				// vector
				non_torsions.push_back(i);
			}
			else
			{
				type_atom1 = atom1->getType();
				type_atom2 = atom2->getType();
				lj_tmp.atom1 = atom1;
				lj_tmp.atom2 = atom2;

				if (!lennard_jones_.assignParameters(lj_tmp.values, type_atom1, type_atom2))
				{
					// hydrogen bond parameters are assigned later - do nothing!
					if (!hydrogen_bond_.hasParameters(type_atom1, type_atom2))
					{
						Log.error() << "VanDerWaalsSlick::setup(): "
							<< "cannot find vdw parameters for types "
							<< atom1->getTypeName() << "-" << atom2->getTypeName()
							<< " (" << atom1->getFullName() << "-"
							<< atom2->getFullName() << ")" << std::endl;

						lj_tmp.values.A = 0;
						lj_tmp.values.B = 0;

						getScoringFunction()->getUnassignedAtoms().insert(atom1);
						getScoringFunction()->getUnassignedAtoms().insert(atom2);
					}
				}

				non_bonded_.push_back(lj_tmp);
			}
		}

		// Determine and set the number of 1-4 interactions (torsions)
		number_of_1_4_ = (Size)non_bonded_.size();

		// Iterate and search non torsions, fill them in the vector non_bonded_
		for (Position i = 0; i < (Size)non_torsions.size(); ++i)
		{
			atom1 = atom_pair_vector[non_torsions[i]].first;
			atom2 = atom_pair_vector[non_torsions[i]].second;

			type_atom1 = atom1->getType();
			type_atom2 = atom2->getType();
			lj_tmp.atom1 = atom1;
			lj_tmp.atom2 = atom2;

			if (lennard_jones_.hasParameters(type_atom1, type_atom2))
			{
				lennard_jones_.assignParameters(lj_tmp.values, type_atom1, type_atom2);
			#ifdef DEBUGDEFUNCT
				std::cout << "Assigning: " << type_atom1 << "/" << type_atom2
					<< " --> A = " << lj_tmp.values.A << ", B = " << lj_tmp.values.B
					<< std::endl;
			#endif
			}
			else
			{
				Log.error() << "AmberNonBonded::setup(): "
				<< "cannot find Lennard Jones parameters for types "
				<< " (" << atom1->getFullName() << "-" << atom2->getFullName() << ")"
				<< std::endl;

				lj_tmp.atom1 = atom1;
				lj_tmp.atom2 = atom2;
				lj_tmp.values.A = 0;
				lj_tmp.values.B = 0;
			}

			non_bonded_.push_back(lj_tmp);
		}

		// now check for hydrogen bonds
		// parameters for hydrogen bonds are used, if they exist
		// and the two atoms are not vicinal (1-4).
		// We make sure that the H-bond parameters are all at the
		// end of the pair list.
		Potential1210::Values values;
		number_of_h_bonds_ = 0;
		Position first_h_bond = non_bonded_.size();
		for (Position i = number_of_1_4_; i < first_h_bond; )
		{
			// Retrieve the two atom types...
			type_atom1 = non_bonded_[i].atom1->getType();
			type_atom2 = non_bonded_[i].atom2->getType();

			// and figure out whether we have suitable H-bond parameters.
			bool is_hydrogen_bond = hydrogen_bond_.hasParameters(type_atom1,
			type_atom2);
			if (is_hydrogen_bond)
			{
				// OK, it's an H-bond pair. Retrieve its parameters and assign
				// them.
				hydrogen_bond_.assignParameters(values, type_atom1, type_atom2);
				non_bonded_[i].values.A = values.A;
				non_bonded_[i].values.B = values.B;

				// Note this as an H-bond.
				number_of_h_bonds_++;

				// ...and swap it to the end of the pair list.
				first_h_bond--;
				std::swap(non_bonded_[i], non_bonded_[first_h_bond]);
			}
			else
			{
				// No H-bond, get the next pair.
				is_hydrogen_bond_.push_back(false);
				i++;
			}
		}
		// Fill the is_hydrogen_bond_ vector with the reamining pairs
		// (H-bonds only)
		for (Position i = first_h_bond; i < non_bonded_.size(); i++)
		{
			is_hydrogen_bond_.push_back(true);
		}

		return(getScoringFunction()->getUnassignedAtoms().size());
	}


	// This is the standard version of the Lennard-Jones potential.
	//
	// inline float vdwSixTwelve(float inverse_square_distance,
	float vdwSixTwelve(float inverse_square_distance,
			float A, float B, float /* limit */)
	{
		float inv_dist_6(inverse_square_distance
				* inverse_square_distance * inverse_square_distance);

#ifdef DEBUG
		/*
		std::cout << "S: ir6 = " << inv_dist_6
			<< ", dist = " << sqrt(1.0f/inverse_square_distance)
			<< ", lim = " << pow(A/B, 1.0f/6.0f)
			<< ", A = " << A << ", B = " << B
			<< std::endl;
			*/
		float e = (inv_dist_6 * (inv_dist_6 * A - B));
		std::cout << "e = " << e << std::endl;
		if (fabs(e) > 100.0f)
		{
			std::cout << "ACHTUNG!" << std::endl;
		}

#endif

		return (inv_dist_6 * (inv_dist_6 * A - B));
	}


	// This is the simple softened version of the Lennard-Jones potential.
	// This function will simply return a constant (defined by
	// softening_limit) if the energy should rise above that constant value.
	//
	// inline float vdwSixTwelve(float inverse_square_distance,
	inline float vdwSixTwelveSoftSimple(float inverse_square_distance,
			float A, float B, float limit)
	{
		float inv_dist_6(inverse_square_distance
				* inverse_square_distance * inverse_square_distance);

#ifdef DEBUG
		/*
		std::cout << "S: ir6 = " << inv_dist_6
			<< ", dist = " << sqrt(1.0f/inverse_square_distance)
			<< ", lim = " << pow(A/B, 1.0f/6.0f)
			<< ", A = " << A << ", B = " << B
			<< std::endl;
		*/
		float e = (inv_dist_6 * (inv_dist_6 * A - B));
		std::cout << "e = " << e << std::endl;
		if (fabs(e) > 100.0f)
		{
			std::cout << "ACHTUNG!" << std::endl;
		}

#endif

		float energy = inv_dist_6 * (inv_dist_6 * A - B);
		//  if (energy > limit) energy = limit;
		if (energy > limit) energy = limit;
		return (energy);
	}

	// This is the somewhat more sophisitcated softened version of the
	// Lennard-Jones potential.
	// If the energy contribution of one atom pair is above the softening
	// limit, it returns the value of softening limit plus the logarithm of
	// the energy.
	//
	// inline float vdwSixTwelve(float inverse_square_distance,
	inline float vdwSixTwelveSoftLog(float inverse_square_distance,
			float A, float B, float limit)
	{
		float inv_dist_6(inverse_square_distance
				* inverse_square_distance * inverse_square_distance);

#ifdef DEBUG
		/*
		std::cout << "S: ir6 = " << inv_dist_6
			<< ", dist = " << sqrt(1.0f/inverse_square_distance)
			<< ", lim = " << pow(A/B, 1.0f/6.0f)
			<< ", A = " << A << ", B = " << B
			<< std::endl;
		*/
		float e = (inv_dist_6 * (inv_dist_6 * A - B));
		std::cout << "e = " << e << std::endl;
		if (fabs(e) > 100.0f)
		{
			std::cout << "ACHTUNG!" << std::endl;
		}

#endif

		float energy = inv_dist_6 * (inv_dist_6 * A - B);
		//  if (energy > limit) energy = limit;
		if (energy > limit) energy = limit + log(energy);
		return (energy);
	}


	inline float vdwTenTwelve(float inverse_square_distance,
			float A, float B, float /* limit */)
	{
		float inv_dist_10 = inverse_square_distance *
			inverse_square_distance;
		inv_dist_10 *= inv_dist_10 * inverse_square_distance;
		return (inv_dist_10 * (inverse_square_distance * A - B));
	}


	inline float vdwTenTwelveSoftSimple(float inverse_square_distance,
			float A, float B, float limit)
	{
		float inv_dist_10 = inverse_square_distance *
			inverse_square_distance;
		inv_dist_10 *= inv_dist_10 * inverse_square_distance;
		float energy = inv_dist_10 * (inverse_square_distance * A - B);
		if (energy > limit) energy = limit;
		return(energy);
	}


	inline float vdwTenTwelveSoftLog(float inverse_square_distance,
			float A, float B, float limit)
	{
		float inv_dist_10 = inverse_square_distance *
			inverse_square_distance;
		inv_dist_10 *= inv_dist_10 * inverse_square_distance;
		float energy = inv_dist_10 * (inverse_square_distance * A - B);
		if (energy > limit) energy = limit + log(energy);
		return(energy);
	}


	typedef float (*VdwEnergyFunction) (float square_dist, float A, float B,
			float limit);
	typedef float (*SwitchingFunction) (double square_distance,
			const SwitchingCutOnOff& cutoffs);

	template <VdwEnergyFunction VdwEnergy, SwitchingFunction Switch>
	BALL_INLINE void AmberVDWEnergy
		(LennardJones::Data* ptr, LennardJones::Data* end_ptr,
		double& vdw_energy, const SwitchingCutOnOff& switching_vdw,
		float softening_limit)
	{
		// iterate over all pairs
		for (; ptr != end_ptr; ++ptr)
		{
			// compute the square distance
			double square_distance(ptr->atom1->getPosition().getSquareDistance(ptr->atom2->getPosition()));
			double inverse_square_distance(1.0 / square_distance);

			vdw_energy += VdwEnergy(inverse_square_distance, ptr->values.A,
					ptr->values.B, softening_limit)
				* Switch(square_distance, switching_vdw);
		}
	}


	// ??? There seems to be something wrong with this switching function.

  // inline float cubicSwitch(double square_distance,
  /*float cubicSwitch(double square_distance,
			const SwitchingCutOnOff& cutoffs)
  {
    float below_off = ((square_distance < cutoffs.cutoff_2) ? 1.0 : 0.0);
    float below_on = ((square_distance < cutoffs.cuton_2) ? 1.0 : 0.0);
		return below_off * (below_on + (1.0 - below_on)
				* SQR(cutoffs.cutoff_2 - square_distance)
				* (cutoffs.cutoff_2 + 2.0 * square_distance - 3.0 * cutoffs.cuton_2)
				* cutoffs.inverse_distance_off_on_3);
	}
*/

	float noSwitch(double /* square_distance */, const SwitchingCutOnOff& /* cutoffs */)
	{
		return 1.0f;
	}


	double VanDerWaalsSlick::calculateVDWEnergy_(const AtomVector& atom_vector)

	{
		// NOTE: The following is NOT the AMBER definition of van der Waals.
		// This is the 6-12 interaction of non-bonded atoms ONLY, there are no
		// hydrogen bonds and no 1-4 terms.

		// Calculate all non bonded atom pairs
		// Brute force algorithm from MolmecSupport without cutoff
		ForceField::PairVector atom_pair_vector;
		MolmecSupport::calculateNonBondedAtomPairs(atom_pair_vector,
				atom_vector, SimpleBox3(), 20.0f, false,
				MolmecSupport::BRUTE_FORCE);

		// Size no_unassigned_atoms = createNonBondedList_(atom_pair_vector);
		createNonBondedList_(atom_pair_vector);

		double cut_off_vdw_2 = SQR(cut_off_vdw_);
		double cut_on_vdw_2 = SQR(cut_on_vdw_);
		double inverse_distance_off_on_vdw_3 = cut_off_vdw_2 - cut_on_vdw_2;
		inverse_distance_off_on_vdw_3 *= SQR(inverse_distance_off_on_vdw_3);

		SwitchingCutOnOff cutoffs_vdw
			= { (float)cut_off_vdw_2, (float)cut_on_vdw_2, (float)inverse_distance_off_on_vdw_3 };

		double vdw_energy_1_4 = 0.0;
		double vdw_energy = 0.0;
		double hbond_energy = 0.0;

		// ??? Disabled switching for the moment, because there seems to some
		// error. Using s/noSwitch/cubicSwitch/ will turn it on again.
		if (calculation_method_ == CALCULATION__FULL_LJ_POTENTIAL)
		{
		AmberVDWEnergy<vdwSixTwelve, noSwitch>
			(&non_bonded_[0],
			 &non_bonded_[number_of_1_4_],
			 vdw_energy_1_4, cutoffs_vdw, softening_limit_);
		AmberVDWEnergy<vdwSixTwelve, noSwitch>
			(&non_bonded_[number_of_1_4_],
			 &non_bonded_[non_bonded_.size() - number_of_h_bonds_],
			 vdw_energy, cutoffs_vdw, softening_limit_);
		AmberVDWEnergy<vdwTenTwelve, noSwitch>
			(&non_bonded_[non_bonded_.size() - number_of_h_bonds_],
			 &non_bonded_[non_bonded_.size()],
			 hbond_energy, cutoffs_vdw, softening_limit_);
		}
		else
		{
			if (calculation_method_ == CALCULATION__SOFTENED_LJ_POTENTIAL_SIMPLE)
			{
				AmberVDWEnergy<vdwSixTwelveSoftSimple, noSwitch>
					(&non_bonded_[0],
					 &non_bonded_[number_of_1_4_],
					 vdw_energy_1_4, cutoffs_vdw, softening_limit_);
				AmberVDWEnergy<vdwSixTwelveSoftSimple, noSwitch>
					(&non_bonded_[number_of_1_4_],
					 &non_bonded_[non_bonded_.size() - number_of_h_bonds_],
					 vdw_energy, cutoffs_vdw, softening_limit_);
				AmberVDWEnergy<vdwTenTwelveSoftSimple, noSwitch>
					(&non_bonded_[non_bonded_.size() - number_of_h_bonds_],
					 &non_bonded_[non_bonded_.size()],
					 hbond_energy, cutoffs_vdw, softening_limit_);
			}
			else
			{
				if (calculation_method_ == CALCULATION__SOFTENED_LJ_POTENTIAL_LOG)
				{
					AmberVDWEnergy<vdwSixTwelveSoftLog, noSwitch>
						(&non_bonded_[0],
						 &non_bonded_[number_of_1_4_],
						 vdw_energy_1_4, cutoffs_vdw, softening_limit_);
					AmberVDWEnergy<vdwSixTwelveSoftLog, noSwitch>
						(&non_bonded_[number_of_1_4_],
						 &non_bonded_[non_bonded_.size() - number_of_h_bonds_],
						 vdw_energy, cutoffs_vdw, softening_limit_);
					AmberVDWEnergy<vdwTenTwelveSoftLog, noSwitch>
						(&non_bonded_[non_bonded_.size() - number_of_h_bonds_],
						 &non_bonded_[non_bonded_.size()],
						 hbond_energy, cutoffs_vdw, softening_limit_);
				}
				else
				{
					Log.error() << "Unknown calculation method for VDW model"
						<< std::endl;
				}
			}
		}

		double energy = scaling_vdw_1_4_ * vdw_energy_1_4 + vdw_energy
			+ hbond_energy;

#ifdef DEBUG
		std::cout << "S: " << scaling_vdw_1_4_ * vdw_energy_1_4 << " + "
			<< vdw_energy << " + " << hbond_energy << " = " << energy << std::endl;
#endif


		return(energy);
	}


	void VanDerWaalsSlick::update(const vector<std::pair<Atom*, Atom*> >& /* pair_vector */)
	{
	}


	double VanDerWaalsSlick::updateScore()
	{
		// Because we have local copies, we need to update the atom postition
		// for our molecules.
		AtomConstIterator src = getScoringFunction()->getReceptor()->beginAtom();
		AtomIterator dst = vdw_receptor_->beginAtom();
		// This for-loop assumes that both systems are still of same size and
		// that atoms are still in the same order. No checking done on this!
		for (; +src && +dst; ++src, ++dst)
		{
			dst->setPosition(src->getPosition());
		}

		src = getScoringFunction()->getLigand()->beginAtom();
		dst = vdw_ligand_->beginAtom();
		for (; +src && +dst; ++src, ++dst)
		{
			dst->setPosition(src->getPosition());
		}


		// Collect atoms
		AtomVector atom_vector;

		AtomIterator it = vdw_system_.beginAtom();
		for (; +it; ++it) atom_vector.push_back(&*it);

		double complex_energy = calculateVDWEnergy_(atom_vector);
		if (verbosity_ > 1)
		{
			std::cout << "VDW energy of complex: " << complex_energy << std::endl;
		}

		// Receptor:

		// Collect atoms
		atom_vector.clear();

		it = vdw_receptor_->beginAtom();
		for (; +it; ++it) atom_vector.push_back(&*it);

		double receptor_energy = calculateVDWEnergy_(atom_vector);
		if (verbosity_ > 1)
		{
			Log.info() << "VDW energy of receptor: " << receptor_energy << std::endl;
		}

		// Ligand:

		// Collect atoms
		atom_vector.clear();

		it = vdw_ligand_->beginAtom();
		for (; +it; ++it) atom_vector.push_back(&*it);

		double ligand_energy = calculateVDWEnergy_(atom_vector);
		if (verbosity_ > 1)
		{
			Log.info() << "VDW energy of ligand: " << ligand_energy << std::endl;
		}

		score_ = complex_energy - (receptor_energy + ligand_energy);

		if (verbosity_ > 1)
		{
			Log.info() << "VanDerWaalsSlick::calculateScore(): score_ is "
				<< score_ << std::endl;
		}

		return score_;
	}
}