1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
#include <BALL/SCORING/FUNCTIONS/rescoring.h>
#include <BALL/SCORING/FUNCTIONS/MMScoring.h>
#include <BALL/SCORING/COMPONENTS/aromaticRingStacking.h>
#include <BALL/SCORING/COMPONENTS/polarity.h>
#include <BALL/FORMAT/SDFile.h>
#include <BALL/FORMAT/MOL2File.h>
#include <BALL/QSAR/registry.h>
#include <BALL/QSAR/featureSelection.h>
#include <BALL/QSAR/statistics.h>
#include <BALL/QSAR/plsModel.h>
#include <BALL/QSAR/kplsModel.h>
#include <BALL/QSAR/automaticModelCreator.h>
using namespace BALL;
using namespace std;
Rescoring::Rescoring(AtomContainer& receptor, AtomContainer& reference_ligand, Options& options, String free_energy_label, ScoringFunction* sf)
{
name_ = "";
if (!sf)
{
scoring_function_ = new MMScoring(receptor, reference_ligand, options);
}
else
{
scoring_function_ = sf;
}
free_energy_label_ = free_energy_label;
ff_filename_ = options.get("filename");
convert_ = (free_energy_label_.hasSubstring("Ki")||free_energy_label_.hasSubstring("IC50"));
if (convert_)
{
Log.level(10)<<"[info:] using Ki or IC50 as input, will convert them to free-energy values."<<endl<<endl;
}
use_calibration_ = 0;
setup_();
}
void Rescoring::setup_()
{
convert_ = (free_energy_label_.hasSubstring("Ki")||free_energy_label_.hasSubstring("IC50"));
if (convert_)
{
Log.level(10)<<"[info:] using Ki or IC50 as input, will convert them to free-energy values."<<endl<<endl;
}
data_.Y_.resize(1);
data_.descriptor_matrix_.resize(0);
model_ = 0;
check_applicability_ = 1;
stddev_out_.open("outliers.txt");
}
Rescoring::~Rescoring()
{
//delete scoring_function_;
delete model_;
}
void Rescoring::addScoreContributions(Molecule* mol)
{
// add affinity data
if (mol->hasProperty(free_energy_label_))
{
float value = ((String)(mol->getProperty(free_energy_label_).toString())).toFloat();
if (convert_)
{
value *= 1e-09;
value = 1.987*298.15*log(value)*4.184/1000;
mol->setProperty("binding free energy", value);
}
// In some datasets the IC50 for some molecules is annotated as 0nM, which is of course nonsense (-> pIC50 = -inf). Thus, we will ignore such molecules.
if (Maths::isInfinite(value) /* || value > 0*/ || value < -90)
{
Log.level(20)<<"invalid free-energy value found, ignoring this molecule!!"<<endl;
return;
}
data_.Y_[0].push_back(value);
String name = mol->getName();
if (name == "") name = "noname";
data_.substance_names_.push_back(name);
}
else
{
Log.level(20)<<"[warning:] no free-energy property found, skipping this molecule!"<<endl;
return;
}
if (data_.descriptor_matrix_.size() == 0)
{
vector<double> v;
generateScoreContributions_(mol, 0, &v);
Size no_columns = v.size();
data_.column_names_.resize(no_columns);
data_.descriptor_matrix_.resize(no_columns);
for (Size i = 0; i < no_columns; i++)
{
data_.column_names_[i] = String(i);
data_.descriptor_matrix_[i].push_back(v[i]);
}
}
else
{
generateScoreContributions_(mol, &data_.descriptor_matrix_, 0);
}
}
void Rescoring::recalibrate()
{
if (!use_calibration_) return; // do nothing if no calibration is to be done
data_.centerData(1);
using namespace QSAR;
// create PLS model
delete model_;
AutomaticModelCreator amc(&data_);
amc.setMinQuality(0.20);
Model* m = amc.generateModel();
model_ = dynamic_cast<RegressionModel*>(m);
return;
PLSModel* pls = new PLSModel(data_);
//KPLSModel* pls = new KPLSModel(data_, 2, 0.005, -1);
model_ = pls;
KernelModel* kernel_model = dynamic_cast<KernelModel*>(model_);
pls->setNoComponents(1);
model_->readTrainingData();
model_->train();
model_->validation->crossValidation(5);
double q2 = model_->validation->getQ2();
model_->validation->testInputData();
double r2 = model_->validation->getR2();
Log.level(40)<<"Quality after recalibration using all grid cells/features: "<<endl;
Log.level(40)<<" R^2 = "<<r2<<endl;
Log.level(40)<<" Q^2 = "<<q2<<endl;
// select features
FeatureSelection fs(*model_);
double d = 0.95;
fs.removeHighlyCorrelatedFeatures(d);
model_->optimizeParameters(5);
if (kernel_model) kernel_model->kernel->gridSearch(0.25, 20, 0, 5);
fs.twinScan(5);
model_->optimizeParameters(5);
if (kernel_model) kernel_model->kernel->gridSearch(0.25, 20, 0, 5);
// If very few features are selected, the resulting model is very likely highly unstable, so try to find some additional helpful features with a more expensive feature selection procedure
Size no_features = model_->getDescriptorIDs()->size();
if (no_features < 5)
{
Log.level(40) << "Only "<<no_features<<" features found by TwinScan ... "<<endl<<flush;
model_->deleteDescriptorIDs();
double threshold = -0.03;
fs.setQualityIncreaseCutoff(threshold);
fs.twinScan(5);
model_->optimizeParameters(5);
if (kernel_model) kernel_model->kernel->gridSearch(0.25, 20, 0, 5);
Log.level(40) << " #Features found by TwinScan with cutoff=-0.01 : "<<model_->getDescriptorIDs()->size()<<endl<<flush;
threshold = 0.01;
fs.setQualityIncreaseCutoff(threshold);
fs.forwardSelection(5);
Log.level(40) << " #Features found by forward selection : "<<model_->getDescriptorIDs()->size()<<endl<<flush;
model_->optimizeParameters(5);
if (kernel_model) kernel_model->kernel->gridSearch(0.25, 20, 0, 5);
if (model_->getDescriptorIDs()->size() < 2)
{
model_->deleteDescriptorIDs();
multiset<unsigned int>* features = const_cast<multiset<unsigned int>*>(model_->getDescriptorIDs());
unsigned int no_descriptors = data_.getNoDescriptors();
for (Size i = 0; i < no_descriptors; i++)
{
features->insert(i);
}
model_->optimizeParameters(5);
if (kernel_model) kernel_model->kernel->gridSearch(0.25, 20, 0, 5);
model_->readTrainingData();
model_->train();
// remove feature with coefficient = 0
const Eigen::MatrixXd* coeffs = model_->getTrainingResult();
int row = 1;
for (multiset < unsigned int > ::iterator it = features->begin(); it != features->end(); row++)
{
if (fabs((*coeffs)(row, 1)) < 1e-06)
{
multiset<unsigned int>::iterator tmp = it;
tmp++;
features->erase(it);
it = tmp;
}
else it++;
}
Log.level(40) << " #Features with coeff!=0 :"<<features->size()<<endl<<flush;
}
}
// do cross-validation and display result
model_->readTrainingData();
model_->train();
model_->validation->crossValidation(5);
q2 = model_->validation->getQ2();
model_->validation->testInputData();
r2 = model_->validation->getR2();
Log.level(40)<<endl<<"Quality after recalibration using only "<<model_->getDescriptorIDs()->size()<<" grid cells/features: "<<endl;
Log.level(40)<<" R^2 = "<<r2<<endl;
Log.level(40)<<" Q^2 = "<<q2<<endl;
}
double Rescoring::rescore(Molecule* mol)
{
if (!scoring_function_)
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Rescoring3D::rescore() Error", "No scoring-function has been set!");
}
bool trained_model = 1;
if (!model_) trained_model = 0;
// else
// {
// trained_model = (model_->getTrainingResult()->getRowCount()==model_->getDescriptorIDs()->size());
// }
if (!trained_model)
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Rescoring3D::rescore() Error", "No trained model available! Use recalibrate first");
}
scoring_function_->setLigand(*mol);
scoring_function_->update();
double score = scoring_function_->updateScore();
vector<double> score_contributions(0, 0);
generateScoreContributions_(mol, 0, &score_contributions);
if (data_.descriptor_matrix_.size() == 0)
{
vector<double> v(1, 0);
data_.descriptor_matrix_.resize(score_contributions.size(), v);
}
double rescore = score;
bool valid = 1;
// If scoring-function detected a bad pose, we prevent those ligands from receiving good scores during rescoring.
// if(score>=0)
// {
// if(mol->hasProperty("score"))
// {
// rescore = ((String)mol->getProperty("score").toString()).toDouble();
// }
// valid=0;
// }
/// if desired, check if compound is within applicability domain
if (valid && check_applicability_)
{
const Eigen::MatrixXd & descriptor_transformations_ = model_->getDescriptorTransformations();
const multiset<unsigned int>* descriptor_IDs = model_->getDescriptorIDs();
Size j = 1;
double max_deviation_factor = 0;
for (Size i = 0; i < score_contributions.size(); i++)
{
// if feature is not part of current model, ignore it
if (descriptor_IDs->find(i) == descriptor_IDs->end())
{
continue;
}
double deviation_factor = abs(score_contributions[i]-descriptor_transformations_(1, j))/descriptor_transformations_(2, j);
if (deviation_factor > max_deviation_factor)
{
max_deviation_factor = deviation_factor;
}
// check whether (score_contributions[i]-mean of feature) > 5*stddev of feature
if (abs(score_contributions[i]-descriptor_transformations_(1, j)) > 5*descriptor_transformations_(2, j))
{
if (score_contributions[i] < descriptor_transformations_(1, j))
{
score_contributions[i] = descriptor_transformations_(1, j)-5*descriptor_transformations_(2, j);
}
else
{
score_contributions[i] = descriptor_transformations_(1, j)+5*descriptor_transformations_(2, j);
}
//valid = 0;
//break;
}
j++;
}
if (!valid)
{
Log.level(20)<<"[Warning:] compound outside of applicability domain, no rescoring done!"<<endl;
rescore = 1e10;
}
}
if (valid) // use the model to predict binding affinity only if it is applicable to the current molecule
{
rescore = model_->predict(score_contributions, 1)[0];
}
/// If prediction seems to be very unreliable, use docking-score instead.
if (valid)
{
const Eigen::MatrixXd & y_tr = model_->getYTransformations();
if (fabs(rescore-y_tr(1, 1)) > 10*y_tr(2, 1))
{
rescore = score;
if (mol->hasProperty("score"))
{
rescore = ((String)mol->getProperty("score").toString()).toDouble();
}
valid = 0;
}
}
mol->setProperty("re-score", rescore);
// save score and affinity in order to be able to calculate quality later
if (valid && mol->hasProperty(free_energy_label_))
{
float value = ((String)(mol->getProperty(free_energy_label_).toString())).toFloat();
if (convert_)
{
value *= 1e-09;
value = 1.987*298.15*log(value)*4.184/1000;
mol->setProperty("binding free energy", value);
}
if (Maths::isInfinite(value) || value < -90)
{
Log.level(20)<<"invalid free-energy value found, ignoring this molecule for calculation of prediction-quality!!"<<endl;
}
else
{
predicted_affinities_.push_back(rescore);
experimental_affinities_.push_back(value);
}
}
Log<<"re-score = "<<rescore<<endl;
return rescore;
}
void Rescoring::saveModel(String filename)
{
bool trained_model = 1;
if (!model_) trained_model = 0;
// else
// {
// Size no_features = model_->getDescriptorIDs()->size();
// if(no_features==0) no_features=data_.getNoDescriptors();
// trained_model = (model_->getTrainingResult()->getRowCount()==no_features);
// }
if (!trained_model)
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Rescoring::saveModel() Error", "No trained model available! Use recalibrate first");
}
model_->saveToFile(filename);
}
void Rescoring::loadModel(String filename)
{
if (model_) delete model_;
QSAR::Model* new_model = QSAR::createNewModelFromFile(filename, data_);
QSAR::RegressionModel* new_regr_model = dynamic_cast<QSAR::RegressionModel*>(new_model);
if (new_regr_model) model_ = new_regr_model;
else
{
delete new_model;
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Rescoring::loadModel() Error", "Model to be loaded from file is no regression-model and thus cannot be used!");
}
}
void Rescoring::calculateQuality(double& correlation, double& q2, double& std_error)
{
double mean_p = QSAR::Statistics::getMean(predicted_affinities_);
double mean_e = QSAR::Statistics::getMean(experimental_affinities_);
double covar = QSAR::Statistics::getCovariance(predicted_affinities_, experimental_affinities_, mean_p, mean_e);
double stddev_e = QSAR::Statistics::getStddev(experimental_affinities_, mean_e);
double stddev_p = QSAR::Statistics::getStddev(predicted_affinities_, mean_p);
correlation = covar / (stddev_e*stddev_p);
double ssE = 0;
double ssY = 0;
for (Size i = 0; i < experimental_affinities_.size(); i++)
{
ssE += pow(experimental_affinities_[i]-predicted_affinities_[i], 2);
ssY += pow(experimental_affinities_[i]-mean_e, 2);
Log<<predicted_affinities_[i]<<" "<<experimental_affinities_[i]<<endl;
}
q2 = 1-(ssE/ssY);
std_error = sqrt(ssE/experimental_affinities_.size());
}
const String& Rescoring::getName()
{
return name_;
}
|