File: pair6_12RDFIntegrator.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (716 lines) | stat: -rw-r--r-- 53,370 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: pair6_12RDFIntegrator.C,v 1.20 2003/08/26 09:18:26 oliver Exp $
//

#include <BALL/MATHS/common.h>
#include <BALL/SOLVATION/pair6_12RDFIntegrator.h>

#include <limits>

using namespace std;

#ifdef BALL_COMPILER_MSVC
#	define atanh(x) ((log(1. + x) - log(1. - x)) / 2.)
#endif

namespace BALL
{

	// ?????
	float MIN_DISTANCE = 1e-6;

	const char* Pair6_12RDFIntegrator::Option::VERBOSITY = "verbosity";
	const char* Pair6_12RDFIntegrator::Option::METHOD = "integration_method";
	const char* Pair6_12RDFIntegrator::Option::SAMPLES = "samples";

	const Size Pair6_12RDFIntegrator::Default::VERBOSITY = 0;
	const Size Pair6_12RDFIntegrator::Default::METHOD = METHOD__ANALYTICAL;
	const Size Pair6_12RDFIntegrator::Default::SAMPLES = 30;

	Pair6_12RDFIntegrator::Pair6_12RDFIntegrator()
		: RDFIntegrator(),
			A_(0.0),
			B_(0.0),
			k1_(0.0),
			k2_(0.0)
	{
		options.setDefaultInteger(Option::VERBOSITY, Default::VERBOSITY);
		options.setDefaultInteger(Option::METHOD, Default::METHOD);
		options.setDefaultInteger(Option::SAMPLES, Default::SAMPLES);
	}


	Pair6_12RDFIntegrator::Pair6_12RDFIntegrator(const Pair6_12RDFIntegrator&
	integrator)
		:	RDFIntegrator(integrator),
			options(integrator.options),
			A_(integrator.A_),
			B_(integrator.B_),
			k1_(integrator.k1_),
			k2_(integrator.k2_)
	{
	}


	Pair6_12RDFIntegrator::Pair6_12RDFIntegrator(double A, double B,
			double k1, double k2, const RadialDistributionFunction& rdf)
		:	RDFIntegrator(rdf),
			A_(A),
			B_(B),
			k1_(k1),
			k2_(k2)
	{
		options.setDefaultInteger(Option::VERBOSITY, Default::VERBOSITY);
		options.setDefaultInteger(Option::METHOD, Default::METHOD);
		options.setDefaultInteger(Option::SAMPLES, Default::SAMPLES);
	}


	Pair6_12RDFIntegrator::~Pair6_12RDFIntegrator()
	{
		clear();

		valid_ = false;
	}


	void Pair6_12RDFIntegrator::clear()
	{
		A_ = 0.0;
		B_ = 0.0;
		k1_ = 0.0;
		k2_ = 0.0;
		// ?????: options.clear() ?
		options.clear(); 
		RDFIntegrator::clear();
	}


	const Pair6_12RDFIntegrator& Pair6_12RDFIntegrator::operator =
		(const Pair6_12RDFIntegrator& integrator)
	{
		A_ = integrator.A_;
		B_ = integrator.B_;
		k1_ = integrator.k1_;
		k2_ = integrator.k2_;
		options = integrator.options;
		RDFIntegrator::operator = (integrator);

		return *this;
	}


	void Pair6_12RDFIntegrator::setConstants(double A, double B, double k1, 
			double k2)
	{
		A_ = A;
		B_ = B;
		k1_ = k1;
		k2_ = k2;
	}


	void Pair6_12RDFIntegrator::getConstants(double& A, double& B, double& k1, 
			double& k2) 
		
	{
		A = A_;
		B = B_;
		k1 = k1_;
		k2 = k2_;
	}


	double Pair6_12RDFIntegrator::integrateToInf(double from) 
		const 
	{

		Index verbosity =
			(Index)options.getInteger(Pair6_12RDFIntegrator::Option::VERBOSITY);
		Size method = (Size)options.getInteger(Pair6_12RDFIntegrator::Option::METHOD);

		if (method == METHOD__UNKNOWN)
		{
			Log.warn() << "Unknown integration method, defaulting to analytical."
				<< endl;
			method = METHOD__ANALYTICAL;
		}

		PiecewisePolynomial poly = getRDF().getRepresentation();
		Interval interval;
		double val = 0.0;
		double lower_inf; 
		
		// now build the interval we want to integrate
		Size number_of_intervals = (Size)poly.getIntervals().size();
		if (number_of_intervals < 1)
		{ 
			// ?????: Sollte hier eine Exception geworfen werden?
			Log.error() << "Pair6_12RDFIntegrator::integrateToInf(): "
				<< "No intervals defined" << endl;
			getRDF().dump();
			return 0.0;
		}
		interval = poly.getInterval(number_of_intervals - 1);

		// the last interval has to be defined to infinity
		if (interval.second != std::numeric_limits<double>::infinity())
		{
			// ?????: Sollte hier eine Exception geworfen werden?
			Log.error() << "Pair6_12RDFIntegrator::integrateToInf(): "
				<< "Last interval must have infinity as upper limit." << endl;
			getRDF().dump();
			return 0.0;
		}

		// k2_ is always > 0, so we don't have to fabs() here
		if (k2_ < MIN_DISTANCE)
		{

			// the point from where the integration to inf will start.
			lower_inf = interval.first;

		}
		else
		{

			// the point from where the integration to inf will start. As interval
			// is an interval of the RDF we have to project it to the integration
			// beam
			lower_inf = unproject(interval.first);

		}

		// first compute the integral addends with limits < infinity

		if (from < lower_inf)
		{
			interval = Interval(from, lower_inf);
			val = integrate(from, interval.second);
		}
		else 
		{
			lower_inf = from;
		}

		// now compute the rest of the integral, i. e. the term to infinity.

		Coefficients a = poly.getCoefficients(number_of_intervals - 1);
		if ((a[1] != 0.0) || (a[2] != 0.0) || (a[3] != 0.0)) 
		{
			Log.warn() << "RDF::integralToInf(): Got a non-constant polynomial."
				<< " There might be something wrong." << endl;
		}

		// only for readibility
		double r = lower_inf;
		double r3 = r * r * r;
		double infval = a[0]/9 * (A_ - 3.0 * B_ * r3 *r3) / (r3 * r3 * r3);
		val += infval;
		if (verbosity > 9)
		{
			Log.info() << "r = " << r << endl;
			Log.info() << "infval = " << infval << endl;
		}
		return val;
	}


	double Pair6_12RDFIntegrator::integrateToInf(double from, double A, 
			double B, double k1, double k2) 
	{
		setConstants(A, B, k1, k2);
		return integrateToInf(from);
	}


	double Pair6_12RDFIntegrator::integrate(double from, double to) const
		
	{

		// This is hack. I think. 
		if (to < from)
		{
			Log.warn() << "to < from, exchanging" << endl;
			double tmp = to;
			to = from;
			from = tmp;
		}

		// int verbosity =
		//	options.getInteger(Pair6_12RDFIntegrator::Option::VERBOSITY);
		Size method = (Size)options.getInteger(Pair6_12RDFIntegrator::Option::METHOD);

		if (method == METHOD__UNKNOWN)
		{
			Log.warn() << "Unknown integration method, defaulting to analytical."
				<< endl;
			method = METHOD__ANALYTICAL;
		}

		if (method == METHOD__ANALYTICAL)
		{
			// analytical integration. We need to build the intervals for
			// integration according to the limits of the polynomial
			// representation of the radial distribution function. If geometrical
			// correction has to be performed, these limits need to be projected
			// to and from the integration beam.

			// we need the parameters of the plynomial description of the radial
			// distribution function.

			PiecewisePolynomial poly = getRDF().getRepresentation();

			// k2_ is the squared distance between spehere center and atom
			// center, so if this is small it is very likely that they are the
			// same and thus projecting values is not necessary.

			double FROM;
			double TO;

			// k2_ is always > 0, so we don't have to fabs() here
			if (k2_ < MIN_DISTANCE)
			{
				FROM = from;
				TO = to;
			}
			else
			{
				FROM = project(from);
				TO = project(to);
			}

			Size from_index = poly.getIntervalIndex(FROM);
			Size to_index = poly.getIntervalIndex(TO);

			if ((from_index == INVALID_Position) || (to_index == INVALID_Position))
			{
				// no error message, because getIntervalIndex() handles this
				return 0.0;
			}

			// Although we might have to project, we are still integrating the
			// interval [from, to).
			
			Interval interval(from, to);
			Coefficients coeffs = poly.getCoefficients(from_index);
			double x0 = poly.getInterval(from_index).first;

			// If the (projected) limits yield one interval, just compute and
			// return the value of it.

			if (from_index == to_index)
			{
				// this REQUIRES that the first integral is the one starting at
				// zero
				if (from_index == 0)
				{
					return 0.0;
				}
				else
				{
					return analyticallyIntegrateInterval(interval, coeffs, x0);
				}
			}

			// if we didn't return, the indices weren't equal, so we have to sum
			// up at least two intervals.

			// we have to set the upper limit which is the back projected
			// interval limit of the rdf definition

			double val = 0.0;

			// k2_ is always > 0, so we don't have to fabs() here
			if (k2_ < MIN_DISTANCE)
			{

				// this REQUIRES that the first integral is the one starting at
				// zero, i. e. has zero parameters, yielding a computed value of zero
				if (from_index > 0) 
				{
					interval.second = poly.getInterval(from_index).second;
					x0 = poly.getInterval(from_index).first;
					val = analyticallyIntegrateInterval(interval, coeffs, x0);
				}

				// if we are below the last interval, sum up the results from each
				// interval integration.
				for (Size k = from_index + 1; k < to_index; ++k)
				{
					coeffs = poly.getCoefficients(k);
					interval = poly.getInterval(k);
					x0 = poly.getInterval(k).first;
					val += analyticallyIntegrateInterval(interval, coeffs, x0);
				}

				// if the decision from_index == to_index was false, to_index should
				// not be 0 here, so I won't test that...

				coeffs = poly.getCoefficients(to_index);
				interval = poly.getInterval(to_index);
				interval.second = to;
				x0 = poly.getInterval(to_index).first;
				val += analyticallyIntegrateInterval(interval, coeffs, x0);

				return val;
			}
			else
			{
				// this REQUIRES that the first integral is the one starting at
				// zero, i. e. has zero parameters, yielding a computed value of zero
				if (from_index > 0) 
				{
					interval.second = unproject(poly.getInterval(from_index).second);
					x0 = unproject(poly.getInterval(from_index).first);
					val = analyticallyIntegrateInterval(interval, coeffs, x0);
				}

				Interval INTERVAL;
				// if we are below the last interval, sum up the results from each
				// interval integration.
				for (Size k = from_index + 1; k < to_index; ++k)
				{
					coeffs = poly.getCoefficients(k);
					INTERVAL = poly.getInterval(k);
					x0 = unproject(poly.getInterval(k).first);
					interval.first = unproject(INTERVAL.first);
					interval.second = unproject(INTERVAL.second);
					val += analyticallyIntegrateInterval(interval, coeffs, x0);
				}

				// if the decision from_index == to_index was false, to_index should
				// not be 0 here, so I won't test that...
				coeffs = poly.getCoefficients(to_index);
				INTERVAL = poly.getInterval(to_index);
				interval.first = unproject(INTERVAL.first);
				interval.second = to;
				x0 = unproject(poly.getInterval(to_index).first);
				val += analyticallyIntegrateInterval(interval, coeffs, x0);

				return val;
			}
		}
		else
		{
			if (method == METHOD__TRAPEZIUM)
			{
				// numerical integration does not need this projecting thing
				// because this method uses values of the integrand, that are
				// computed with respect to the geometry

				Interval interval(from, to);
				return numericallyIntegrateInterval(interval);
			}
			else
			{
				Log.error() << "Unknown integration method" << endl;
				return 0;
			}
		}
	}


	double Pair6_12RDFIntegrator::integrate(double from, double to, double A, 
			double B, double k1, double k2) 
	{
		setConstants(A, B, k1, k2);
		return integrate(from, to);
	}


	double Pair6_12RDFIntegrator::operator () (double x) const 
	{
		return integrateToInf(x);
	}


	bool Pair6_12RDFIntegrator::operator == 
		(const Pair6_12RDFIntegrator& integrator) const 
		
	{
		return ((RDFIntegrator::operator == (integrator))
			&& (A_ == integrator.A_)
			&& (B_ == integrator.B_)
			&& (k1_ == integrator.k1_)
			&& (k2_ == integrator.k2_));
	}


	double Pair6_12RDFIntegrator::numericallyIntegrateInterval
		(const Interval& interval) const 
		
	{

		int samples = (int) options.getInteger(Option::SAMPLES);
		int verbosity = (int) options.getInteger(Option::VERBOSITY);

		double lower_limit = interval.first;
		double upper_limit = interval.second;

		if (verbosity > 9)
		{
			Log.info() << "lower_limit = " << lower_limit << endl;
			Log.info() << "upper_limit = " << upper_limit << endl;
			Log.info() << "k1 = " << k1_ << endl;
			Log.info() << "k2 = " << k2_ << endl;
		}

		// this is the case where we have to consider the geometry of the
		// situation. As this seems analytically impossible, we have to do it
		// numerically. The method we use is the trapezium method.

		double area = 0;
		if (verbosity > 9)
		{
			Log.info() << "Using " << samples 
				<< " sample points for numerical integration" << endl;
		}
		unsigned int n = samples;

		// lower case variables are for the potential term
		// upper case variables are for the rdf term (representing the
		// geometrical correction)
		double x, s;
		double X = x = lower_limit;
		double S = s = (upper_limit-lower_limit)/n;

		if (k2_ > MIN_DISTANCE) 
		{
			X = sqrt((lower_limit*lower_limit + k1_ * lower_limit + k2_));
			S = (sqrt((upper_limit*upper_limit + k1_ * upper_limit + k2_))-X)/n;
		}

		// temporary variables
		double x6;
		double xs6;

		while (n > 0)
		{
			if (verbosity > 9)
			{
				Log.info() << "rdf(" << X << ") = " << getRDF()(X) << endl;
			}

			x6 = pow(x,6);
			xs6 = pow(x+s,6);

			area += (x*x*(A_/(x6*x6) - B_/x6) * getRDF()(X) 
					+ (x+s)*(x+s)*(A_/(xs6*xs6) - B_/xs6) * getRDF()(X+S)) / 2.0 * s;
			x += s;
			X += S;
			--n;
		}

		return area;
	}


	double Pair6_12RDFIntegrator::analyticallyIntegrateInterval
		(const Interval& interval, const Coefficients& a, float x0) 
		const 
	{

		double r = interval.first;
		double R = interval.second;
		if (BALL::Maths::isNan(r) || BALL::Maths::isNan(R))
		{
			Log.error() << 
				"Pair6_12RDFIntegrator::analyticallyIntegrateInterval(): "
				<< "detected NaN in line " << __LINE__  << endl;
			Log.error() << "r = " << r << endl;
			Log.error() << "R = " << R << endl;
		}

		// k2_ is always > 0, so we don't have to fabs() here
		if (k2_ < MIN_DISTANCE)
		{

			// This is the case where no projection has to be done, because the
			// distance between the sphere center and the atom center is below
			// 1e-6 Angstroms.

			// Erzeugt Mon Nov  6 16:37:25 MET 2000 mit Maple V R3
			//
			// Kommandos:
			//
			// f:=x^2*(A/x^12 - B/x^6)*sum(a[i]*(x-k)^i, i=0..3);
			// int(f,x=r..R);
			// readlib(C);
			// C(int(f,x=r..R), filename=newC);

			double s1 = (-189.0*A_*a[3]*x0*x0*R-56.0*A_*a[0]-1512.0*B_*a[3]*x0*pow(R,8.0)-168.0*B_*a[1]*x0*pow(R,6.0)-84.0*A_*a[3]*R*R*R+756.0*B_*a[3]*x0*x0*pow(R,7.0)+252.0*B_*a[1]*pow(R,7.0)+168.0*B_*a[0]*pow(R,6.0)+168.0*B_*a[2]*x0*x0*pow(R,6.0)-504.0*B_*a[2]*x0*pow(R,7.0)-63.0*A_*a[1]*R+126.0*A_*a[2]*x0*R-56.0*A_*a[2]*x0*x0+56.0*A_*a[1]*x0+504.0*B_*a[2]*pow(R,8.0)+216.0*A_*a[3]*x0*R*R+56.0*A_*a[3]*x0*x0*x0-72.0*A_*a[2]*R*R-504.0*B_*a[3]*log(R)*pow(R,9.0)-168.0*B_*a[3]*x0*x0*x0*pow(R,6.0))/pow(R,9.0)/504;
			double s2 = (-168.0*B_*a[2]*x0*x0*pow(r,6.0)+56.0*A_*a[0]+504.0*B_*a[2]*x0*pow(r,7.0)-504.0*B_*a[2]*pow(r,8.0)-252.0*B_*a[1]*pow(r,7.0)-168.0*B_*a[0]*pow(r,6.0)+84.0*A_*a[3]*r*r*r-56.0*A_*a[3]*x0*x0*x0+56.0*A_*a[2]*x0*x0-56.0*A_*a[1]*x0+504.0*B_*a[3]*log(r)*pow(r,9.0)+168.0*B_*a[3]*x0*x0*x0*pow(r,6.0)-756.0*B_*a[3]*x0*x0*pow(r,7.0)+189.0*A_*a[3]*x0*x0*r+1512.0*B_*a[3]*x0*pow(r,8.0)+168.0*B_*a[1]*x0*pow(r,6.0)+72.0*A_*a[2]*r*r+63.0*A_*a[1]*r-216.0*A_*a[3]*x0*r*r-126.0*A_*a[2]*x0*r)/pow(r,9.0)/504;
			double t0 = s1+s2;

			if (BALL::Maths::isNan(t0))
			{
				Log.warn() << "Return value is NaN." << endl;
			}

			return t0;

		}
		else
		{

			// Erzeugt am Mon Nov  6 16:33:02 MET 2000 mit MAPLE V Release 3.
			// 
			// Kommandos:
			// 
			// f:=x^2 * (A/x^12 - B/x^6) * sum(a[i] * (sqrt(x^2 + k[1]*x + k[2]) -
			// k[3])^i, i=0..3);
			// int(f, x=r..R);
			// readlib(C);
			// C(int(f,x=r..R), filename=newC);

			double s6 = 16.0/315.0*A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,6)+A_*a[3]*x0*sqrt(pow(k2_,37))/3+A_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))/9+B_*a[0]*sqrt(pow(k2_,35))*pow(R,6)/3+A_*a[1]*x0*sqrt(pow(k2_,35))/9+1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)+B_*a[3]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)/8+B_*a[2]*x0*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,10)/4-A_*a[0]*sqrt(pow(k2_,35))/9-A_*a[2]*sqrt(pow(k2_,37))/9-A_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))/9+B_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,33))*pow(R,6)/3-3.0/4.0*B_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9);
			double s7 = s6-117.0/224.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R*R-B_*a[3]*x0*sqrt(pow(k2_,37))*pow(R,6)+35.0/128.0*A_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)-143.0/3840.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,4)+B_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))*pow(R,6)/3-1771.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9);
			double s5 = s7+16.0/105.0*A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,6)-3.0*B_*a[3]*x0*sqrt(pow(k2_,35))*pow(R,8)+2651.0/13440.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,5)+2145.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,7)-B_*a[2]*x0*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)/2+143.0/6144.0*A_*a[3]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,5)-715.0/16384.0*A_*a[2]*x0*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,9)-B_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9)/16;
			s7 = s5-35.0/256.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,7)+1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)-143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,10)-65.0/672.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R-A_*a[2]*k1_*sqrt(pow(k2_,35))*R/8+2651.0/4480.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,5);
			s6 = s7-8.0/105.0*A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,4)+2.0/9.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))-B_*a[3]*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,33))*pow(R,10)-B_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,8)/4+B_*a[2]*x0*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,9)/4-B_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))*pow(R,6)/3+15.0/256.0*A_*a[3]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,14)*pow(R,9);
			s7 = s6-2651.0/6720.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,5)+143.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,19))*pow(R,7)+35.0/256.0*A_*a[1]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)-39.0/224.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R*R-143.0/98304.0*A_*a[3]*pow(k1_,9)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,9)+2.0/21.0*A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R*R;
			double s4 = s7+455.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)+143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,17))*pow(R,8)-143.0/12288.0*A_*a[3]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,21))*pow(R,6)-8.0/315.0*A_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*pow(R,4)-187.0/2016.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*R*R*R+39.0/112.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R*R-99.0/4096.0*A_*a[3]*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9)+2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,10);
			s7 = s4-35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,8)+1771.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9)+143.0/2688.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,27))*R*R*R+209.0/2240.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,27))*pow(R,4)-32.0/315.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,6)+115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,21))*pow(R,8);
			s6 = s7+143.0/512.0*A_*a[1]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,6)-1001.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,7)-2.0/3.0*B_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))*pow(R,6)-385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,8)+2431.0/4480.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,5)-B_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,7)/4+4.0/63.0*A_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*R*R;
			s5 = s6+B_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,10)/24-715.0/12288.0*A_*a[1]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,6)-143.0/32768.0*A_*a[3]*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)-1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)+B_*a[2]*k1_*sqrt(pow(k2_,35))*pow(R,7)/2+B_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))*pow(R,6)/3+3.0/7.0*A_*a[3]*x0*sqrt(pow(k2_,35))*R*R+55.0/1536.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,6)+B_*a[2]*sqrt(pow(k2_,35))*pow(R,8)-3.0/2.0*B_*a[3]*x0*k1_*sqrt(pow(k2_,35))*pow(R,7)+3.0/8.0*A_*a[3]*x0*k1_*sqrt(pow(k2_,35))*R-B_*a[1]*x0*sqrt(pow(k2_,35))*pow(R,6)/3-A_*a[2]*sqrt(pow(k2_,35))*R*R/7+B_*a[2]*sqrt(pow(k2_,37))*pow(R,6)/3;
			s7 = s5-2717.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9)+13.0/144.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*R+715.0/32768.0*A_*a[1]*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,9)-125.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)+B_*a[3]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,10)/8+15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,10);
			s6 = s7+35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,8)+1155.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,7)-385.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,7)+539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,10)+5.0/16.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R-35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)-8151.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9);
			s7 = s6+3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,8)-2145.0/65536.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,9)*pow(R,9)-35.0/256.0*A_*a[1]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)-143.0/2016.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*R*R+2.0/7.0*A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R*R-105.0/256.0*A_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)+105.0/256.0*A_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9);
			double s8 = s7+5.0/256.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,7)+429.0/4096.0*A_*a[1]*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9)-2.0/3.0*B_*a[3]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,10);
			double s3 = s8+16.0/105.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,4)+2871.0/4480.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,6)-115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,10)+315.0/256.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9)-2079.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9);
			s7 = s3-7.0/12.0*B_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,9)+35.0/128.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,7)-2431.0/8960.0*A_*a[1]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,5)-B_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*pow(R,8)/24+B_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,9)/24;
			s6 = s7-B_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*pow(R,7)/12-539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,19))*pow(R,8)+105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,8)+105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)+1287.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9)-5.0/4.0*B_*a[3]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,33))*pow(R,9)+11.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,21))*pow(R,7);
			s7 = s6+3.0/4.0*B_*a[3]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,17)*pow(R,9)-105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,7)-1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,8)-1573.0/3360.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,4)-1365.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)+3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,8);
			s5 = s7+143.0/2048.0*A_*a[1]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,5)-8.0/35.0*A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,4)+2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,9)-429.0/1792.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,4)-A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))/9-143.0/1792.0*A_*a[1]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,4)-8613.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,6)+2717.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9);
			s7 = s5+429.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,5)-105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)+B_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,7)/2+715.0/8064.0*A_*a[1]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*R*R*R+2.0/3.0*B_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*pow(R,8)+143.0/65536.0*A_*a[3]*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9);
			s6 = s7-A_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,33))/9-35.0/256.0*A_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)-503.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)-4.0/21.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R*R-429.0/2048.0*A_*a[2]*x0*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9)-B_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,15)*pow(R,9)/8+649.0/16384.0*A_*a[3]*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9);
			s7 = s6-241.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,9)+5.0/48.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R-1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,8)+693.0/1024.0*A_*a[2]*x0*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9)-105.0/128.0*A_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9)+715.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,7)-715.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,6);
			s4 = s7-2871.0/8960.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,6)-A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))/3-3003.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,7)+429.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,6)-715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,8)+253.0/8192.0*A_*a[3]*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)-95.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,7)+B_*a[1]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)/4;
			s7 = s4+5.0/128.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,27))*pow(R,5)+185.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,9)-B_*a[1]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9)/4-35.0/128.0*A_*a[2]*x0*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)-5.0/256.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,9)-15.0/256.0*A_*a[3]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,27))*pow(R,9);
			s6 = s7+935.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,9)+B_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))*pow(R,6)+189.0/2048.0*A_*a[3]*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9)-7293.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,5)-3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)-455.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)-693.0/2048.0*A_*a[1]*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9);
			s7 = s6-2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,8)+715.0/2688.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*R*R*R-65.0/224.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R-B_*a[3]*log(R+k1_/2+sqrt(R*R+k2_+k1_*R))*sqrt(pow(k2_,35))*pow(R,9)+1573.0/2240.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,4)+B_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,8)/8;
			s5 = s7+15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,10)+3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)-5.0/256.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,6)+3.0/16.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,15)*pow(R,9)-3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,10)-15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,8)+1001.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,7)-143.0/256.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,6);
			s7 = s5-3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,9)-143.0/32768.0*A_*a[3]*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9)-55.0/768.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,5)+B_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,15)*pow(R,9)/16+155.0/1024.0*A_*a[3]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)+385.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,7);
			s6 = s7+B_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9)/2+65.0/336.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R-5.0/24.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R-715.0/4032.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*R*R*R-715.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,7)-715.0/65536.0*A_*a[1]*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,9)*pow(R,9)+385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)+715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,8);
			s7 = s6-143.0/1024.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,5)+715.0/6144.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,6)+143.0/896.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,4)-B_*a[1]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,10)/8+385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,8)+715.0/32768.0*A_*a[2]*x0*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,9)*pow(R,9)-715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,10);
			double s2 = s7-385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)+35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)-3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,7)+1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,8)+1573.0/6720.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,4)-B_*a[1]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,9)/8+5313.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9)+715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,10);
			s3 = 1/pow(R,9)/sqrt(pow(k2_,35));
			double s1 = s2*s3;
			s7 = 65.0/224.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r-B_*a[0]*sqrt(pow(k2_,35))*pow(r,6)/3-35.0/256.0*A_*a[1]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)+3.0/2.0*B_*a[3]*x0*k1_*sqrt(pow(k2_,35))*pow(r,7)-B_*a[2]*sqrt(pow(k2_,37))*pow(r,6)/3-209.0/2240.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,27))*pow(r,4)-A_*a[3]*x0*sqrt(pow(k2_,37))/3-A_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))/9+5.0/256.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,6)-A_*a[1]*x0*sqrt(pow(k2_,35))/9+A_*a[0]*sqrt(pow(k2_,35))/9+8.0/35.0*A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,4)+A_*a[2]*sqrt(pow(k2_,37))/9;
			s8 = s7-15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,10)-B_*a[2]*sqrt(pow(k2_,35))*pow(r,8)+A_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))/9-3.0/8.0*A_*a[3]*x0*k1_*sqrt(pow(k2_,35))*r+A_*a[2]*sqrt(pow(k2_,35))*r*r/7-3.0/7.0*A_*a[3]*x0*sqrt(pow(k2_,35))*r*r;
			s6 = s8-935.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,9)-115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,21))*pow(r,8)-253.0/8192.0*A_*a[3]*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10)-539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,10)+539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,19))*pow(r,8)+241.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,9)+95.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,7)+143.0/12288.0*A_*a[3]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,21))*pow(r,6);
			s8 = s6-143.0/2688.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,27))*r*r*r-143.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,19))*pow(r,7)-5.0/128.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,27))*pow(r,5)+143.0/32768.0*A_*a[3]*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)+143.0/3840.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,4)-143.0/6144.0*A_*a[3]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,5);
			s7 = s8+15.0/256.0*A_*a[3]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,27))*pow(r,9)+143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,10)-2.0/9.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))-315.0/256.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)-55.0/1536.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,6)-3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,8)+125.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10);
			s8 = s7+5.0/256.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,9)+3003.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,7)+8151.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9)-5.0/48.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r-13.0/144.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*r+187.0/2016.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*r*r*r;
			double s9 = s8+7293.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,5)-143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,17))*pow(r,8)+143.0/2016.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*r*r;
			s5 = s9+2145.0/65536.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,9)*pow(r,9)+8613.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,6)+2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,8)-429.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,6)-1287.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9);
			s8 = s5+503.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+55.0/768.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,5)-1155.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,7)+105.0/256.0*A_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)+8.0/315.0*A_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*pow(r,4)-15.0/256.0*A_*a[3]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,14)*pow(r,9);
			s7 = s8-5.0/256.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,7)-189.0/2048.0*A_*a[3]*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)+35.0/256.0*A_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)-B_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,10)/24+3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)+715.0/65536.0*A_*a[1]*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,9)*pow(r,9)-1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10);
			s8 = s7+99.0/4096.0*A_*a[3]*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,9)-2145.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,7)+3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,9)-715.0/32768.0*A_*a[1]*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,9)-16.0/315.0*A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,6);
			s6 = s8+429.0/2048.0*A_*a[2]*x0*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9)+429.0/1792.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,4)-429.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,5)+715.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,6)+1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)-2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,10)-715.0/2688.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*r*r*r+1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,8);
			s8 = s6-1573.0/2240.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,4)-105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)+B_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,7)/4+39.0/224.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r*r-2.0/21.0*A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r*r+35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10);
			s7 = s8+B_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)/16-16.0/105.0*A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,6)+105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10)+8.0/105.0*A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,4)+117.0/224.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r*r+105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,7)-B_*a[1]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)/4;
			s8 = s7-105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,8)-5.0/16.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r+B_*a[1]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,9)/8-35.0/128.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,7)-B_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,15)*pow(r,9)/16-B_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))*pow(r,6)/3+B_*a[1]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,10)/8;
			s4 = s8+143.0/98304.0*A_*a[3]*pow(k1_,9)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,9)-B_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,8)/8+B_*a[2]*x0*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)/2+A_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,33))/9-B_*a[2]*x0*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,9)/4+B_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,8)/4+2.0/3.0*B_*a[3]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,10)+B_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,15)*pow(r,9)/8;
			s8 = s4-3.0/4.0*B_*a[3]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,17)*pow(r,9)-B_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,33))*pow(r,6)/3+2.0/3.0*B_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))*pow(r,6)+7.0/12.0*B_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,9)-B_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,7)/2;
			s7 = s8-2651.0/4480.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,5)-105.0/256.0*A_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)-1771.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)-B_*a[3]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,10)/8+455.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+693.0/2048.0*A_*a[1]*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-429.0/4096.0*A_*a[1]*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9);
			s8 = s7+2717.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9)+A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))/9+B_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*pow(r,7)/12-B_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))*pow(r,6)/3+35.0/256.0*A_*a[1]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)+B_*a[1]*x0*sqrt(pow(k2_,35))*pow(r,6)/3;
			s6 = s8-B_*a[2]*k1_*sqrt(pow(k2_,35))*pow(r,7)/2-4.0/63.0*A_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*r*r+B_*a[3]*x0*sqrt(pow(k2_,37))*pow(r,6)+5.0/4.0*B_*a[3]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,33))*pow(r,9)-2.0/7.0*A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r*r+A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))/3+3.0*B_*a[3]*x0*sqrt(pow(k2_,35))*pow(r,8)-2.0/3.0*B_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*pow(r,8);
			s8 = s6-385.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,7)+385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,8)-143.0/512.0*A_*a[1]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,6)+A_*a[2]*k1_*sqrt(pow(k2_,35))*r/8-1573.0/6720.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,4)+1001.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,7);
			s7 = s8-455.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,10)+B_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*pow(r,8)/24+B_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))*pow(r,6)/3-B_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,9)/24+2431.0/8960.0*A_*a[1]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,5)+B_*a[3]*log(r+k1_/2+sqrt(r*r+k2_+k1_*r))*sqrt(pow(k2_,35))*pow(r,9);
			s8 = s7-143.0/896.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,4)-715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,8)+143.0/1024.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,5)+715.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,7)+35.0/256.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,7)-715.0/32768.0*A_*a[2]*x0*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,9)*pow(r,9)-35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,8);
			s5 = s8+35.0/128.0*A_*a[2]*x0*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)-385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,8)+105.0/128.0*A_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)+143.0/1792.0*A_*a[1]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,4)-385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10)-2651.0/13440.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,5)+715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,10)+715.0/16384.0*A_*a[2]*x0*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,9);
			s8 = s5+5.0/24.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r-693.0/1024.0*A_*a[2]*x0*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-649.0/16384.0*A_*a[3]*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)-2431.0/4480.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,5)+715.0/4032.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*r*r*r+35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,8);
			s7 = s8+385.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,7)+1573.0/3360.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,4)-39.0/112.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r*r+65.0/672.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r-143.0/2048.0*A_*a[1]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,5)+715.0/12288.0*A_*a[1]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,6)-715.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,7);
			s8 = s7-B_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))*pow(r,6)-715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,10)-3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)+715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,8)+143.0/256.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,6)+3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,10);
			s6 = s8-1001.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,7)+3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,7)+1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,8)+2651.0/6720.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,5)+385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10)-3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,8)-1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)-16.0/105.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,4);
			s8 = s6-2871.0/4480.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,6)+32.0/315.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,6)+B_*a[3]*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,33))*pow(r,10)-B_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)/2+B_*a[1]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)/4+143.0/32768.0*A_*a[3]*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9);
			s7 = s8-B_*a[2]*x0*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,10)/4-B_*a[3]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)/8+3.0/4.0*B_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)+2871.0/8960.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,6)-35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10)-35.0/128.0*A_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)-2717.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9)-185.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,9);
			s8 = s7-1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,8)-715.0/8064.0*A_*a[1]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*r*r*r-5313.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)-3.0/16.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,15)*pow(r,9)+1771.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)+1365.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+4.0/21.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r*r;
			s3 = s8+2079.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-65.0/336.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r+15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,8)-715.0/6144.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,6)-143.0/65536.0*A_*a[3]*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9)-155.0/1024.0*A_*a[3]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)-11.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,21))*pow(r,7)-15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,10);
			s4 = 1/sqrt(pow(k2_,35))/pow(r,9);
			s2 = s3*s4;
			double t0 = s1+s2;

			if (BALL::Maths::isNan(t0))
			{
				Log.warn() << "Return value is NaN." << endl;
				Log.warn() << "Error occurred while integrating [" << r << ","
					<< R << ") - " << x0 << endl
					<< "Coefs: " << a[0] << " " << a[1] << " " << a[2] << " " 
					<< a[3] << endl;
				dump();
			}

			return t0;
		}

	}


	void Pair6_12RDFIntegrator::dump(ostream& stream, Size /* depth */) const
	
	{
		stream << "[Pair6_12RDFIntegrator:]" << endl;
		stream << "A_ = " << A_ << endl;
		stream << "B_ = " << B_ << endl;
		stream << "k1_ = " << k1_ << endl;
		stream << "k2_ = " << k2_ << endl;
		getRDF().dump();
	}


	double Pair6_12RDFIntegrator::project(double x) const 
	{
		// k2_ is always > 0, so we don't have to fabs() here
		if (k2_ < MIN_DISTANCE)
		{
			Log.warn() << "project called with k2_ == " << k2_ 
				<< ". Something seemingly went wrong." << endl;
			return x;
		}

		double arg = x*x + k1_ * x + k2_;
		if (arg < 0)
		{
			Log.error() << "Pair6_12RDFIntegrator::project(): " 
				<< "square root of negative term!" << endl;
			dump();
			return 0.0;
		}
		else
		{
			return sqrt(arg);
		}
	}


	double Pair6_12RDFIntegrator::unproject(double x) const 
	{
		// k2_ is always > 0, so we don't have to fabs() here
		if (k2_ < MIN_DISTANCE)
		{
			Log.warn() << "unproject called with k2_ == " << k2_ 
				<< ". Something seemingly went wrong." << endl;
			return x;
		}

		double arg = x*x + k1_*k1_ / 4 - k2_;
		if (arg < 0)
		{
			Log.error() << "Pair6_12RDFIntegrator::unproject(): " 
				<< "square root of negative term! " << x << endl;
			dump();
			return 0.0;
		}
		else
		{
			return sqrt(arg) - k1_ / 2;
		}
	}


} // namespace BALL