1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: pair6_12RDFIntegrator.C,v 1.20 2003/08/26 09:18:26 oliver Exp $
//
#include <BALL/MATHS/common.h>
#include <BALL/SOLVATION/pair6_12RDFIntegrator.h>
#include <limits>
using namespace std;
#ifdef BALL_COMPILER_MSVC
# define atanh(x) ((log(1. + x) - log(1. - x)) / 2.)
#endif
namespace BALL
{
// ?????
float MIN_DISTANCE = 1e-6;
const char* Pair6_12RDFIntegrator::Option::VERBOSITY = "verbosity";
const char* Pair6_12RDFIntegrator::Option::METHOD = "integration_method";
const char* Pair6_12RDFIntegrator::Option::SAMPLES = "samples";
const Size Pair6_12RDFIntegrator::Default::VERBOSITY = 0;
const Size Pair6_12RDFIntegrator::Default::METHOD = METHOD__ANALYTICAL;
const Size Pair6_12RDFIntegrator::Default::SAMPLES = 30;
Pair6_12RDFIntegrator::Pair6_12RDFIntegrator()
: RDFIntegrator(),
A_(0.0),
B_(0.0),
k1_(0.0),
k2_(0.0)
{
options.setDefaultInteger(Option::VERBOSITY, Default::VERBOSITY);
options.setDefaultInteger(Option::METHOD, Default::METHOD);
options.setDefaultInteger(Option::SAMPLES, Default::SAMPLES);
}
Pair6_12RDFIntegrator::Pair6_12RDFIntegrator(const Pair6_12RDFIntegrator&
integrator)
: RDFIntegrator(integrator),
options(integrator.options),
A_(integrator.A_),
B_(integrator.B_),
k1_(integrator.k1_),
k2_(integrator.k2_)
{
}
Pair6_12RDFIntegrator::Pair6_12RDFIntegrator(double A, double B,
double k1, double k2, const RadialDistributionFunction& rdf)
: RDFIntegrator(rdf),
A_(A),
B_(B),
k1_(k1),
k2_(k2)
{
options.setDefaultInteger(Option::VERBOSITY, Default::VERBOSITY);
options.setDefaultInteger(Option::METHOD, Default::METHOD);
options.setDefaultInteger(Option::SAMPLES, Default::SAMPLES);
}
Pair6_12RDFIntegrator::~Pair6_12RDFIntegrator()
{
clear();
valid_ = false;
}
void Pair6_12RDFIntegrator::clear()
{
A_ = 0.0;
B_ = 0.0;
k1_ = 0.0;
k2_ = 0.0;
// ?????: options.clear() ?
options.clear();
RDFIntegrator::clear();
}
const Pair6_12RDFIntegrator& Pair6_12RDFIntegrator::operator =
(const Pair6_12RDFIntegrator& integrator)
{
A_ = integrator.A_;
B_ = integrator.B_;
k1_ = integrator.k1_;
k2_ = integrator.k2_;
options = integrator.options;
RDFIntegrator::operator = (integrator);
return *this;
}
void Pair6_12RDFIntegrator::setConstants(double A, double B, double k1,
double k2)
{
A_ = A;
B_ = B;
k1_ = k1;
k2_ = k2;
}
void Pair6_12RDFIntegrator::getConstants(double& A, double& B, double& k1,
double& k2)
{
A = A_;
B = B_;
k1 = k1_;
k2 = k2_;
}
double Pair6_12RDFIntegrator::integrateToInf(double from)
const
{
Index verbosity =
(Index)options.getInteger(Pair6_12RDFIntegrator::Option::VERBOSITY);
Size method = (Size)options.getInteger(Pair6_12RDFIntegrator::Option::METHOD);
if (method == METHOD__UNKNOWN)
{
Log.warn() << "Unknown integration method, defaulting to analytical."
<< endl;
method = METHOD__ANALYTICAL;
}
PiecewisePolynomial poly = getRDF().getRepresentation();
Interval interval;
double val = 0.0;
double lower_inf;
// now build the interval we want to integrate
Size number_of_intervals = (Size)poly.getIntervals().size();
if (number_of_intervals < 1)
{
// ?????: Sollte hier eine Exception geworfen werden?
Log.error() << "Pair6_12RDFIntegrator::integrateToInf(): "
<< "No intervals defined" << endl;
getRDF().dump();
return 0.0;
}
interval = poly.getInterval(number_of_intervals - 1);
// the last interval has to be defined to infinity
if (interval.second != std::numeric_limits<double>::infinity())
{
// ?????: Sollte hier eine Exception geworfen werden?
Log.error() << "Pair6_12RDFIntegrator::integrateToInf(): "
<< "Last interval must have infinity as upper limit." << endl;
getRDF().dump();
return 0.0;
}
// k2_ is always > 0, so we don't have to fabs() here
if (k2_ < MIN_DISTANCE)
{
// the point from where the integration to inf will start.
lower_inf = interval.first;
}
else
{
// the point from where the integration to inf will start. As interval
// is an interval of the RDF we have to project it to the integration
// beam
lower_inf = unproject(interval.first);
}
// first compute the integral addends with limits < infinity
if (from < lower_inf)
{
interval = Interval(from, lower_inf);
val = integrate(from, interval.second);
}
else
{
lower_inf = from;
}
// now compute the rest of the integral, i. e. the term to infinity.
Coefficients a = poly.getCoefficients(number_of_intervals - 1);
if ((a[1] != 0.0) || (a[2] != 0.0) || (a[3] != 0.0))
{
Log.warn() << "RDF::integralToInf(): Got a non-constant polynomial."
<< " There might be something wrong." << endl;
}
// only for readibility
double r = lower_inf;
double r3 = r * r * r;
double infval = a[0]/9 * (A_ - 3.0 * B_ * r3 *r3) / (r3 * r3 * r3);
val += infval;
if (verbosity > 9)
{
Log.info() << "r = " << r << endl;
Log.info() << "infval = " << infval << endl;
}
return val;
}
double Pair6_12RDFIntegrator::integrateToInf(double from, double A,
double B, double k1, double k2)
{
setConstants(A, B, k1, k2);
return integrateToInf(from);
}
double Pair6_12RDFIntegrator::integrate(double from, double to) const
{
// This is hack. I think.
if (to < from)
{
Log.warn() << "to < from, exchanging" << endl;
double tmp = to;
to = from;
from = tmp;
}
// int verbosity =
// options.getInteger(Pair6_12RDFIntegrator::Option::VERBOSITY);
Size method = (Size)options.getInteger(Pair6_12RDFIntegrator::Option::METHOD);
if (method == METHOD__UNKNOWN)
{
Log.warn() << "Unknown integration method, defaulting to analytical."
<< endl;
method = METHOD__ANALYTICAL;
}
if (method == METHOD__ANALYTICAL)
{
// analytical integration. We need to build the intervals for
// integration according to the limits of the polynomial
// representation of the radial distribution function. If geometrical
// correction has to be performed, these limits need to be projected
// to and from the integration beam.
// we need the parameters of the plynomial description of the radial
// distribution function.
PiecewisePolynomial poly = getRDF().getRepresentation();
// k2_ is the squared distance between spehere center and atom
// center, so if this is small it is very likely that they are the
// same and thus projecting values is not necessary.
double FROM;
double TO;
// k2_ is always > 0, so we don't have to fabs() here
if (k2_ < MIN_DISTANCE)
{
FROM = from;
TO = to;
}
else
{
FROM = project(from);
TO = project(to);
}
Size from_index = poly.getIntervalIndex(FROM);
Size to_index = poly.getIntervalIndex(TO);
if ((from_index == INVALID_Position) || (to_index == INVALID_Position))
{
// no error message, because getIntervalIndex() handles this
return 0.0;
}
// Although we might have to project, we are still integrating the
// interval [from, to).
Interval interval(from, to);
Coefficients coeffs = poly.getCoefficients(from_index);
double x0 = poly.getInterval(from_index).first;
// If the (projected) limits yield one interval, just compute and
// return the value of it.
if (from_index == to_index)
{
// this REQUIRES that the first integral is the one starting at
// zero
if (from_index == 0)
{
return 0.0;
}
else
{
return analyticallyIntegrateInterval(interval, coeffs, x0);
}
}
// if we didn't return, the indices weren't equal, so we have to sum
// up at least two intervals.
// we have to set the upper limit which is the back projected
// interval limit of the rdf definition
double val = 0.0;
// k2_ is always > 0, so we don't have to fabs() here
if (k2_ < MIN_DISTANCE)
{
// this REQUIRES that the first integral is the one starting at
// zero, i. e. has zero parameters, yielding a computed value of zero
if (from_index > 0)
{
interval.second = poly.getInterval(from_index).second;
x0 = poly.getInterval(from_index).first;
val = analyticallyIntegrateInterval(interval, coeffs, x0);
}
// if we are below the last interval, sum up the results from each
// interval integration.
for (Size k = from_index + 1; k < to_index; ++k)
{
coeffs = poly.getCoefficients(k);
interval = poly.getInterval(k);
x0 = poly.getInterval(k).first;
val += analyticallyIntegrateInterval(interval, coeffs, x0);
}
// if the decision from_index == to_index was false, to_index should
// not be 0 here, so I won't test that...
coeffs = poly.getCoefficients(to_index);
interval = poly.getInterval(to_index);
interval.second = to;
x0 = poly.getInterval(to_index).first;
val += analyticallyIntegrateInterval(interval, coeffs, x0);
return val;
}
else
{
// this REQUIRES that the first integral is the one starting at
// zero, i. e. has zero parameters, yielding a computed value of zero
if (from_index > 0)
{
interval.second = unproject(poly.getInterval(from_index).second);
x0 = unproject(poly.getInterval(from_index).first);
val = analyticallyIntegrateInterval(interval, coeffs, x0);
}
Interval INTERVAL;
// if we are below the last interval, sum up the results from each
// interval integration.
for (Size k = from_index + 1; k < to_index; ++k)
{
coeffs = poly.getCoefficients(k);
INTERVAL = poly.getInterval(k);
x0 = unproject(poly.getInterval(k).first);
interval.first = unproject(INTERVAL.first);
interval.second = unproject(INTERVAL.second);
val += analyticallyIntegrateInterval(interval, coeffs, x0);
}
// if the decision from_index == to_index was false, to_index should
// not be 0 here, so I won't test that...
coeffs = poly.getCoefficients(to_index);
INTERVAL = poly.getInterval(to_index);
interval.first = unproject(INTERVAL.first);
interval.second = to;
x0 = unproject(poly.getInterval(to_index).first);
val += analyticallyIntegrateInterval(interval, coeffs, x0);
return val;
}
}
else
{
if (method == METHOD__TRAPEZIUM)
{
// numerical integration does not need this projecting thing
// because this method uses values of the integrand, that are
// computed with respect to the geometry
Interval interval(from, to);
return numericallyIntegrateInterval(interval);
}
else
{
Log.error() << "Unknown integration method" << endl;
return 0;
}
}
}
double Pair6_12RDFIntegrator::integrate(double from, double to, double A,
double B, double k1, double k2)
{
setConstants(A, B, k1, k2);
return integrate(from, to);
}
double Pair6_12RDFIntegrator::operator () (double x) const
{
return integrateToInf(x);
}
bool Pair6_12RDFIntegrator::operator ==
(const Pair6_12RDFIntegrator& integrator) const
{
return ((RDFIntegrator::operator == (integrator))
&& (A_ == integrator.A_)
&& (B_ == integrator.B_)
&& (k1_ == integrator.k1_)
&& (k2_ == integrator.k2_));
}
double Pair6_12RDFIntegrator::numericallyIntegrateInterval
(const Interval& interval) const
{
int samples = (int) options.getInteger(Option::SAMPLES);
int verbosity = (int) options.getInteger(Option::VERBOSITY);
double lower_limit = interval.first;
double upper_limit = interval.second;
if (verbosity > 9)
{
Log.info() << "lower_limit = " << lower_limit << endl;
Log.info() << "upper_limit = " << upper_limit << endl;
Log.info() << "k1 = " << k1_ << endl;
Log.info() << "k2 = " << k2_ << endl;
}
// this is the case where we have to consider the geometry of the
// situation. As this seems analytically impossible, we have to do it
// numerically. The method we use is the trapezium method.
double area = 0;
if (verbosity > 9)
{
Log.info() << "Using " << samples
<< " sample points for numerical integration" << endl;
}
unsigned int n = samples;
// lower case variables are for the potential term
// upper case variables are for the rdf term (representing the
// geometrical correction)
double x, s;
double X = x = lower_limit;
double S = s = (upper_limit-lower_limit)/n;
if (k2_ > MIN_DISTANCE)
{
X = sqrt((lower_limit*lower_limit + k1_ * lower_limit + k2_));
S = (sqrt((upper_limit*upper_limit + k1_ * upper_limit + k2_))-X)/n;
}
// temporary variables
double x6;
double xs6;
while (n > 0)
{
if (verbosity > 9)
{
Log.info() << "rdf(" << X << ") = " << getRDF()(X) << endl;
}
x6 = pow(x,6);
xs6 = pow(x+s,6);
area += (x*x*(A_/(x6*x6) - B_/x6) * getRDF()(X)
+ (x+s)*(x+s)*(A_/(xs6*xs6) - B_/xs6) * getRDF()(X+S)) / 2.0 * s;
x += s;
X += S;
--n;
}
return area;
}
double Pair6_12RDFIntegrator::analyticallyIntegrateInterval
(const Interval& interval, const Coefficients& a, float x0)
const
{
double r = interval.first;
double R = interval.second;
if (BALL::Maths::isNan(r) || BALL::Maths::isNan(R))
{
Log.error() <<
"Pair6_12RDFIntegrator::analyticallyIntegrateInterval(): "
<< "detected NaN in line " << __LINE__ << endl;
Log.error() << "r = " << r << endl;
Log.error() << "R = " << R << endl;
}
// k2_ is always > 0, so we don't have to fabs() here
if (k2_ < MIN_DISTANCE)
{
// This is the case where no projection has to be done, because the
// distance between the sphere center and the atom center is below
// 1e-6 Angstroms.
// Erzeugt Mon Nov 6 16:37:25 MET 2000 mit Maple V R3
//
// Kommandos:
//
// f:=x^2*(A/x^12 - B/x^6)*sum(a[i]*(x-k)^i, i=0..3);
// int(f,x=r..R);
// readlib(C);
// C(int(f,x=r..R), filename=newC);
double s1 = (-189.0*A_*a[3]*x0*x0*R-56.0*A_*a[0]-1512.0*B_*a[3]*x0*pow(R,8.0)-168.0*B_*a[1]*x0*pow(R,6.0)-84.0*A_*a[3]*R*R*R+756.0*B_*a[3]*x0*x0*pow(R,7.0)+252.0*B_*a[1]*pow(R,7.0)+168.0*B_*a[0]*pow(R,6.0)+168.0*B_*a[2]*x0*x0*pow(R,6.0)-504.0*B_*a[2]*x0*pow(R,7.0)-63.0*A_*a[1]*R+126.0*A_*a[2]*x0*R-56.0*A_*a[2]*x0*x0+56.0*A_*a[1]*x0+504.0*B_*a[2]*pow(R,8.0)+216.0*A_*a[3]*x0*R*R+56.0*A_*a[3]*x0*x0*x0-72.0*A_*a[2]*R*R-504.0*B_*a[3]*log(R)*pow(R,9.0)-168.0*B_*a[3]*x0*x0*x0*pow(R,6.0))/pow(R,9.0)/504;
double s2 = (-168.0*B_*a[2]*x0*x0*pow(r,6.0)+56.0*A_*a[0]+504.0*B_*a[2]*x0*pow(r,7.0)-504.0*B_*a[2]*pow(r,8.0)-252.0*B_*a[1]*pow(r,7.0)-168.0*B_*a[0]*pow(r,6.0)+84.0*A_*a[3]*r*r*r-56.0*A_*a[3]*x0*x0*x0+56.0*A_*a[2]*x0*x0-56.0*A_*a[1]*x0+504.0*B_*a[3]*log(r)*pow(r,9.0)+168.0*B_*a[3]*x0*x0*x0*pow(r,6.0)-756.0*B_*a[3]*x0*x0*pow(r,7.0)+189.0*A_*a[3]*x0*x0*r+1512.0*B_*a[3]*x0*pow(r,8.0)+168.0*B_*a[1]*x0*pow(r,6.0)+72.0*A_*a[2]*r*r+63.0*A_*a[1]*r-216.0*A_*a[3]*x0*r*r-126.0*A_*a[2]*x0*r)/pow(r,9.0)/504;
double t0 = s1+s2;
if (BALL::Maths::isNan(t0))
{
Log.warn() << "Return value is NaN." << endl;
}
return t0;
}
else
{
// Erzeugt am Mon Nov 6 16:33:02 MET 2000 mit MAPLE V Release 3.
//
// Kommandos:
//
// f:=x^2 * (A/x^12 - B/x^6) * sum(a[i] * (sqrt(x^2 + k[1]*x + k[2]) -
// k[3])^i, i=0..3);
// int(f, x=r..R);
// readlib(C);
// C(int(f,x=r..R), filename=newC);
double s6 = 16.0/315.0*A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,6)+A_*a[3]*x0*sqrt(pow(k2_,37))/3+A_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))/9+B_*a[0]*sqrt(pow(k2_,35))*pow(R,6)/3+A_*a[1]*x0*sqrt(pow(k2_,35))/9+1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)+B_*a[3]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)/8+B_*a[2]*x0*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,10)/4-A_*a[0]*sqrt(pow(k2_,35))/9-A_*a[2]*sqrt(pow(k2_,37))/9-A_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))/9+B_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,33))*pow(R,6)/3-3.0/4.0*B_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9);
double s7 = s6-117.0/224.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R*R-B_*a[3]*x0*sqrt(pow(k2_,37))*pow(R,6)+35.0/128.0*A_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)-143.0/3840.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,4)+B_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))*pow(R,6)/3-1771.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9);
double s5 = s7+16.0/105.0*A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,6)-3.0*B_*a[3]*x0*sqrt(pow(k2_,35))*pow(R,8)+2651.0/13440.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,5)+2145.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,7)-B_*a[2]*x0*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)/2+143.0/6144.0*A_*a[3]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,5)-715.0/16384.0*A_*a[2]*x0*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,9)-B_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9)/16;
s7 = s5-35.0/256.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,7)+1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)-143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,10)-65.0/672.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R-A_*a[2]*k1_*sqrt(pow(k2_,35))*R/8+2651.0/4480.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,5);
s6 = s7-8.0/105.0*A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,4)+2.0/9.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))-B_*a[3]*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,33))*pow(R,10)-B_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,8)/4+B_*a[2]*x0*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,9)/4-B_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))*pow(R,6)/3+15.0/256.0*A_*a[3]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,14)*pow(R,9);
s7 = s6-2651.0/6720.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,5)+143.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,19))*pow(R,7)+35.0/256.0*A_*a[1]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)-39.0/224.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R*R-143.0/98304.0*A_*a[3]*pow(k1_,9)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,9)+2.0/21.0*A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R*R;
double s4 = s7+455.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)+143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,17))*pow(R,8)-143.0/12288.0*A_*a[3]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,21))*pow(R,6)-8.0/315.0*A_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*pow(R,4)-187.0/2016.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*R*R*R+39.0/112.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R*R-99.0/4096.0*A_*a[3]*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9)+2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,10);
s7 = s4-35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,8)+1771.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9)+143.0/2688.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,27))*R*R*R+209.0/2240.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,27))*pow(R,4)-32.0/315.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,6)+115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,21))*pow(R,8);
s6 = s7+143.0/512.0*A_*a[1]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,6)-1001.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,7)-2.0/3.0*B_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))*pow(R,6)-385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,8)+2431.0/4480.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,5)-B_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,7)/4+4.0/63.0*A_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*R*R;
s5 = s6+B_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,10)/24-715.0/12288.0*A_*a[1]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,6)-143.0/32768.0*A_*a[3]*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)-1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)+B_*a[2]*k1_*sqrt(pow(k2_,35))*pow(R,7)/2+B_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))*pow(R,6)/3+3.0/7.0*A_*a[3]*x0*sqrt(pow(k2_,35))*R*R+55.0/1536.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,6)+B_*a[2]*sqrt(pow(k2_,35))*pow(R,8)-3.0/2.0*B_*a[3]*x0*k1_*sqrt(pow(k2_,35))*pow(R,7)+3.0/8.0*A_*a[3]*x0*k1_*sqrt(pow(k2_,35))*R-B_*a[1]*x0*sqrt(pow(k2_,35))*pow(R,6)/3-A_*a[2]*sqrt(pow(k2_,35))*R*R/7+B_*a[2]*sqrt(pow(k2_,37))*pow(R,6)/3;
s7 = s5-2717.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9)+13.0/144.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*R+715.0/32768.0*A_*a[1]*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,9)-125.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)+B_*a[3]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,10)/8+15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,10);
s6 = s7+35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,8)+1155.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,7)-385.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,7)+539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,10)+5.0/16.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R-35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)-8151.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9);
s7 = s6+3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,8)-2145.0/65536.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,9)*pow(R,9)-35.0/256.0*A_*a[1]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)-143.0/2016.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*R*R+2.0/7.0*A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R*R-105.0/256.0*A_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)+105.0/256.0*A_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9);
double s8 = s7+5.0/256.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,7)+429.0/4096.0*A_*a[1]*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9)-2.0/3.0*B_*a[3]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,10);
double s3 = s8+16.0/105.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,4)+2871.0/4480.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,6)-115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,10)+315.0/256.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9)-2079.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9);
s7 = s3-7.0/12.0*B_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,9)+35.0/128.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,7)-2431.0/8960.0*A_*a[1]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,5)-B_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,29))*pow(R,8)/24+B_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,9)/24;
s6 = s7-B_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*pow(R,7)/12-539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,19))*pow(R,8)+105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,8)+105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)+1287.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9)-5.0/4.0*B_*a[3]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,33))*pow(R,9)+11.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,21))*pow(R,7);
s7 = s6+3.0/4.0*B_*a[3]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,17)*pow(R,9)-105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,7)-1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,8)-1573.0/3360.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,4)-1365.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)+3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,8);
s5 = s7+143.0/2048.0*A_*a[1]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,5)-8.0/35.0*A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,4)+2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,9)-429.0/1792.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,4)-A_*a[1]*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))/9-143.0/1792.0*A_*a[1]*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,4)-8613.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,6)+2717.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9);
s7 = s5+429.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,5)-105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)+B_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,7)/2+715.0/8064.0*A_*a[1]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*R*R*R+2.0/3.0*B_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,31))*pow(R,8)+143.0/65536.0*A_*a[3]*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9);
s6 = s7-A_*a[3]*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,33))/9-35.0/256.0*A_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,13)*pow(R,9)-503.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)-4.0/21.0*A_*a[2]*x0*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R*R-429.0/2048.0*A_*a[2]*x0*pow(k1_,7)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,10)*pow(R,9)-B_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,15)*pow(R,9)/8+649.0/16384.0*A_*a[3]*pow(k1_,7)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9);
s7 = s6-241.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,9)+5.0/48.0*A_*a[1]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R-1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,8)+693.0/1024.0*A_*a[2]*x0*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9)-105.0/128.0*A_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9)+715.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,7)-715.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,6);
s4 = s7-2871.0/8960.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,6)-A_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))/3-3003.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,7)+429.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,6)-715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,8)+253.0/8192.0*A_*a[3]*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)-95.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,7)+B_*a[1]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)/4;
s7 = s4+5.0/128.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,27))*pow(R,5)+185.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,9)-B_*a[1]*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9)/4-35.0/128.0*A_*a[2]*x0*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)-5.0/256.0*A_*a[3]*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,9)-15.0/256.0*A_*a[3]*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,27))*pow(R,9);
s6 = s7+935.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,9)+B_*a[3]*pow(x0,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,33))*pow(R,6)+189.0/2048.0*A_*a[3]*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,12)*pow(R,9)-7293.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,5)-3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,10)-455.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,9)-693.0/2048.0*A_*a[1]*pow(k1_,5)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,11)*pow(R,9);
s7 = s6-2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,8)+715.0/2688.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*R*R*R-65.0/224.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R-B_*a[3]*log(R+k1_/2+sqrt(R*R+k2_+k1_*R))*sqrt(pow(k2_,35))*pow(R,9)+1573.0/2240.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,4)+B_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*pow(R,8)/8;
s5 = s7+15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,10)+3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,31))*pow(R,9)-5.0/256.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,6)+3.0/16.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,15)*pow(R,9)-3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,10)-15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,23))*pow(R,8)+1001.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,7)-143.0/256.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,6);
s7 = s5-3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,9)-143.0/32768.0*A_*a[3]*pow(k1_,9)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,19))*pow(R,9)-55.0/768.0*A_*a[3]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,5))*sqrt(pow(k2_,25))*pow(R,5)+B_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,15)*pow(R,9)/16+155.0/1024.0*A_*a[3]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,25))*pow(R,9)+385.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,7);
s6 = s7+B_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,16)*pow(R,9)/2+65.0/336.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,29))*R*R-5.0/24.0*A_*a[2]*x0*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*R-715.0/4032.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*R*R*R-715.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,7)-715.0/65536.0*A_*a[1]*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,9)*pow(R,9)+385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)+715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,17))*pow(R,8);
s7 = s6-143.0/1024.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,23))*pow(R,5)+715.0/6144.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,6)+143.0/896.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,25))*pow(R,4)-B_*a[1]*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,10)/8+385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,21))*pow(R,8)+715.0/32768.0*A_*a[2]*x0*pow(k1_,9)*atanh((2.0*k2_+k1_*R)/sqrt(k2_)/sqrt(R*R+k2_+k1_*R)/2)*pow(k2_,9)*pow(R,9)-715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,10);
double s2 = s7-385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,10)+35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,23))*pow(R,10)-3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,31))*pow(R,7)+1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,19))*pow(R,8)+1573.0/6720.0*A_*a[1]*pow(k1_,2)*sqrt(pow(R*R+k2_+k1_*R,3))*sqrt(pow(k2_,27))*pow(R,4)-B_*a[1]*pow(k1_,3)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,29))*pow(R,9)/8+5313.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,21))*pow(R,9)+715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(R*R+k2_+k1_*R)*sqrt(pow(k2_,17))*pow(R,10);
s3 = 1/pow(R,9)/sqrt(pow(k2_,35));
double s1 = s2*s3;
s7 = 65.0/224.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r-B_*a[0]*sqrt(pow(k2_,35))*pow(r,6)/3-35.0/256.0*A_*a[1]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)+3.0/2.0*B_*a[3]*x0*k1_*sqrt(pow(k2_,35))*pow(r,7)-B_*a[2]*sqrt(pow(k2_,37))*pow(r,6)/3-209.0/2240.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,27))*pow(r,4)-A_*a[3]*x0*sqrt(pow(k2_,37))/3-A_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))/9+5.0/256.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,6)-A_*a[1]*x0*sqrt(pow(k2_,35))/9+A_*a[0]*sqrt(pow(k2_,35))/9+8.0/35.0*A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,4)+A_*a[2]*sqrt(pow(k2_,37))/9;
s8 = s7-15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,10)-B_*a[2]*sqrt(pow(k2_,35))*pow(r,8)+A_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))/9-3.0/8.0*A_*a[3]*x0*k1_*sqrt(pow(k2_,35))*r+A_*a[2]*sqrt(pow(k2_,35))*r*r/7-3.0/7.0*A_*a[3]*x0*sqrt(pow(k2_,35))*r*r;
s6 = s8-935.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,9)-115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,21))*pow(r,8)-253.0/8192.0*A_*a[3]*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10)-539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,10)+539.0/24576.0*A_*a[3]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,19))*pow(r,8)+241.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,9)+95.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,7)+143.0/12288.0*A_*a[3]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,21))*pow(r,6);
s8 = s6-143.0/2688.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,27))*r*r*r-143.0/49152.0*A_*a[3]*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,19))*pow(r,7)-5.0/128.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,27))*pow(r,5)+143.0/32768.0*A_*a[3]*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)+143.0/3840.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,4)-143.0/6144.0*A_*a[3]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,5);
s7 = s8+15.0/256.0*A_*a[3]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,27))*pow(r,9)+143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,10)-2.0/9.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))-315.0/256.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)-55.0/1536.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,6)-3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,8)+125.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10);
s8 = s7+5.0/256.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,9)+3003.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,7)+8151.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9)-5.0/48.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r-13.0/144.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*r+187.0/2016.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*r*r*r;
double s9 = s8+7293.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,5)-143.0/98304.0*A_*a[3]*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,17))*pow(r,8)+143.0/2016.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*r*r;
s5 = s9+2145.0/65536.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,9)*pow(r,9)+8613.0/8960.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,6)+2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,8)-429.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,6)-1287.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9);
s8 = s5+503.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+55.0/768.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,5)-1155.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,7)+105.0/256.0*A_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)+8.0/315.0*A_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*pow(r,4)-15.0/256.0*A_*a[3]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,14)*pow(r,9);
s7 = s8-5.0/256.0*A_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,25))*pow(r,7)-189.0/2048.0*A_*a[3]*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)+35.0/256.0*A_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)-B_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,10)/24+3003.0/8192.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)+715.0/65536.0*A_*a[1]*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,9)*pow(r,9)-1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10);
s8 = s7+99.0/4096.0*A_*a[3]*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,9)-2145.0/16384.0*A_*a[3]*pow(x0,2)*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,7)+3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,9)-715.0/32768.0*A_*a[1]*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,9)-16.0/315.0*A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,6);
s6 = s8+429.0/2048.0*A_*a[2]*x0*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9)+429.0/1792.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,4)-429.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,5)+715.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,6)+1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)-2145.0/32768.0*A_*a[3]*pow(x0,2)*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,10)-715.0/2688.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*r*r*r+1155.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,8);
s8 = s6-1573.0/2240.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,4)-105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)+B_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,7)/4+39.0/224.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r*r-2.0/21.0*A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r*r+35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10);
s7 = s8+B_*a[3]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)/16-16.0/105.0*A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,6)+105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10)+8.0/105.0*A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,4)+117.0/224.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r*r+105.0/256.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,7)-B_*a[1]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)/4;
s8 = s7-105.0/512.0*A_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,8)-5.0/16.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r+B_*a[1]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,9)/8-35.0/128.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,7)-B_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,15)*pow(r,9)/16-B_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))*pow(r,6)/3+B_*a[1]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,10)/8;
s4 = s8+143.0/98304.0*A_*a[3]*pow(k1_,9)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,9)-B_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,8)/8+B_*a[2]*x0*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)/2+A_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,33))/9-B_*a[2]*x0*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,9)/4+B_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,8)/4+2.0/3.0*B_*a[3]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,10)+B_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,15)*pow(r,9)/8;
s8 = s4-3.0/4.0*B_*a[3]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,17)*pow(r,9)-B_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,33))*pow(r,6)/3+2.0/3.0*B_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))*pow(r,6)+7.0/12.0*B_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,9)-B_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,7)/2;
s7 = s8-2651.0/4480.0*A_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,5)-105.0/256.0*A_*a[1]*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)-1771.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)-B_*a[3]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,10)/8+455.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+693.0/2048.0*A_*a[1]*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-429.0/4096.0*A_*a[1]*pow(k1_,7)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9);
s8 = s7+2717.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9)+A_*a[1]*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))/9+B_*a[3]*k1_*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*pow(r,7)/12-B_*a[2]*pow(x0,2)*sqrt(pow(k2_,35))*pow(r,6)/3+35.0/256.0*A_*a[1]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)+B_*a[1]*x0*sqrt(pow(k2_,35))*pow(r,6)/3;
s6 = s8-B_*a[2]*k1_*sqrt(pow(k2_,35))*pow(r,7)/2-4.0/63.0*A_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*r*r+B_*a[3]*x0*sqrt(pow(k2_,37))*pow(r,6)+5.0/4.0*B_*a[3]*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,33))*pow(r,9)-2.0/7.0*A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r*r+A_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))/3+3.0*B_*a[3]*x0*sqrt(pow(k2_,35))*pow(r,8)-2.0/3.0*B_*a[3]*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,31))*pow(r,8);
s8 = s6-385.0/1024.0*A_*a[1]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,7)+385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,8)-143.0/512.0*A_*a[1]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,6)+A_*a[2]*k1_*sqrt(pow(k2_,35))*r/8-1573.0/6720.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,4)+1001.0/4096.0*A_*a[1]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,7);
s7 = s8-455.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+115.0/2048.0*A_*a[3]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,10)+B_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,29))*pow(r,8)/24+B_*a[3]*pow(x0,3)*sqrt(pow(k2_,35))*pow(r,6)/3-B_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,9)/24+2431.0/8960.0*A_*a[1]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,5)+B_*a[3]*log(r+k1_/2+sqrt(r*r+k2_+k1_*r))*sqrt(pow(k2_,35))*pow(r,9);
s8 = s7-143.0/896.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,4)-715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,8)+143.0/1024.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,5)+715.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,7)+35.0/256.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,7)-715.0/32768.0*A_*a[2]*x0*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,9)*pow(r,9)-35.0/512.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,8);
s5 = s8+35.0/128.0*A_*a[2]*x0*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)-385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,8)+105.0/128.0*A_*a[2]*x0*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,12)*pow(r,9)+143.0/1792.0*A_*a[1]*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,4)-385.0/2048.0*A_*a[1]*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10)-2651.0/13440.0*A_*a[1]*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,5)+715.0/16384.0*A_*a[2]*x0*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,10)+715.0/16384.0*A_*a[2]*x0*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,9);
s8 = s5+5.0/24.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r-693.0/1024.0*A_*a[2]*x0*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-649.0/16384.0*A_*a[3]*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)-2431.0/4480.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,5)+715.0/4032.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*r*r*r+35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,8);
s7 = s8+385.0/512.0*A_*a[2]*x0*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,7)+1573.0/3360.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,4)-39.0/112.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r*r+65.0/672.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r-143.0/2048.0*A_*a[1]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,5)+715.0/12288.0*A_*a[1]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,6)-715.0/16384.0*A_*a[1]*pow(k1_,7)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,7);
s8 = s7-B_*a[3]*pow(x0,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,33))*pow(r,6)-715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,17))*pow(r,10)-3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)+715.0/32768.0*A_*a[1]*pow(k1_,8)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,17))*pow(r,8)+143.0/256.0*A_*a[2]*x0*pow(k1_,4)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,6)+3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,10);
s6 = s8-1001.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,7)+3.0/4.0*B_*a[3]*pow(x0,2)*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*pow(r,7)+1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,8)+2651.0/6720.0*A_*a[2]*x0*k1_*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,5)+385.0/1024.0*A_*a[2]*x0*pow(k1_,4)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,10)-3.0/8.0*B_*a[3]*pow(x0,2)*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,8)-1001.0/4096.0*A_*a[2]*x0*pow(k1_,6)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,10)-16.0/105.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*pow(r,4);
s8 = s6-2871.0/4480.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,6)+32.0/315.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*pow(r,6)+B_*a[3]*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,33))*pow(r,10)-B_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)/2+B_*a[1]*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)/4+143.0/32768.0*A_*a[3]*pow(k1_,9)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9);
s7 = s8-B_*a[2]*x0*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,29))*pow(r,10)/4-B_*a[3]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,31))*pow(r,9)/8+3.0/4.0*B_*a[3]*pow(x0,2)*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,16)*pow(r,9)+2871.0/8960.0*A_*a[1]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,25))*pow(r,6)-35.0/256.0*A_*a[2]*x0*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,10)-35.0/128.0*A_*a[2]*x0*k1_*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,13)*pow(r,9)-2717.0/8192.0*A_*a[2]*x0*pow(k1_,7)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,19))*pow(r,9)-185.0/3072.0*A_*a[3]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,23))*pow(r,9);
s8 = s7-1001.0/8192.0*A_*a[1]*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,19))*pow(r,8)-715.0/8064.0*A_*a[1]*pow(k1_,3)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,27))*r*r*r-5313.0/4096.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)-3.0/16.0*B_*a[3]*pow(x0,2)*pow(k1_,3)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,15)*pow(r,9)+1771.0/2048.0*A_*a[2]*x0*pow(k1_,5)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,21))*pow(r,9)+1365.0/1024.0*A_*a[3]*pow(x0,2)*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,23))*pow(r,9)+4.0/21.0*A_*a[2]*x0*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,31))*r*r;
s3 = s8+2079.0/2048.0*A_*a[3]*pow(x0,2)*pow(k1_,5)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,11)*pow(r,9)-65.0/336.0*A_*a[2]*x0*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,29))*r*r+15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,23))*pow(r,8)-715.0/6144.0*A_*a[2]*x0*pow(k1_,6)*sqrt(pow(r*r+k2_+k1_*r,3))*sqrt(pow(k2_,21))*pow(r,6)-143.0/65536.0*A_*a[3]*pow(k1_,9)*atanh((2.0*k2_+k1_*r)/sqrt(k2_)/sqrt(r*r+k2_+k1_*r)/2)*pow(k2_,10)*pow(r,9)-155.0/1024.0*A_*a[3]*pow(k1_,3)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,9)-11.0/4096.0*A_*a[3]*pow(k1_,5)*sqrt(pow(r*r+k2_+k1_*r,5))*sqrt(pow(k2_,21))*pow(r,7)-15.0/512.0*A_*a[3]*pow(k1_,2)*sqrt(r*r+k2_+k1_*r)*sqrt(pow(k2_,25))*pow(r,10);
s4 = 1/sqrt(pow(k2_,35))/pow(r,9);
s2 = s3*s4;
double t0 = s1+s2;
if (BALL::Maths::isNan(t0))
{
Log.warn() << "Return value is NaN." << endl;
Log.warn() << "Error occurred while integrating [" << r << ","
<< R << ") - " << x0 << endl
<< "Coefs: " << a[0] << " " << a[1] << " " << a[2] << " "
<< a[3] << endl;
dump();
}
return t0;
}
}
void Pair6_12RDFIntegrator::dump(ostream& stream, Size /* depth */) const
{
stream << "[Pair6_12RDFIntegrator:]" << endl;
stream << "A_ = " << A_ << endl;
stream << "B_ = " << B_ << endl;
stream << "k1_ = " << k1_ << endl;
stream << "k2_ = " << k2_ << endl;
getRDF().dump();
}
double Pair6_12RDFIntegrator::project(double x) const
{
// k2_ is always > 0, so we don't have to fabs() here
if (k2_ < MIN_DISTANCE)
{
Log.warn() << "project called with k2_ == " << k2_
<< ". Something seemingly went wrong." << endl;
return x;
}
double arg = x*x + k1_ * x + k2_;
if (arg < 0)
{
Log.error() << "Pair6_12RDFIntegrator::project(): "
<< "square root of negative term!" << endl;
dump();
return 0.0;
}
else
{
return sqrt(arg);
}
}
double Pair6_12RDFIntegrator::unproject(double x) const
{
// k2_ is always > 0, so we don't have to fabs() here
if (k2_ < MIN_DISTANCE)
{
Log.warn() << "unproject called with k2_ == " << k2_
<< ". Something seemingly went wrong." << endl;
return x;
}
double arg = x*x + k1_*k1_ / 4 - k2_;
if (arg < 0)
{
Log.error() << "Pair6_12RDFIntegrator::unproject(): "
<< "square root of negative term! " << x << endl;
dump();
return 0.0;
}
else
{
return sqrt(arg) - k1_ / 2;
}
}
} // namespace BALL
|