1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: reissCavFreeEnergyProcessor.C,v 1.11 2002/02/27 12:24:07 sturm Exp $
#include <BALL/SOLVATION/reissCavFreeEnergyProcessor.h>
#include <BALL/STRUCTURE/numericalSAS.h>
using namespace std;
namespace BALL
{
const char* ReissCavFreeEnergyProcessor::Option::VERBOSITY = "verbosity";
const char* ReissCavFreeEnergyProcessor::Option::SOLVENT_NUMBER_DENSITY
= "solvent_number_density";
const char* ReissCavFreeEnergyProcessor::Option::PRESSURE = "pressure";
const char* ReissCavFreeEnergyProcessor::Option::ABSOLUTE_TEMPERATURE
= "absolute_temperature";
const char* ReissCavFreeEnergyProcessor::Option::PROBE_RADIUS
= "probe_radius";
const int ReissCavFreeEnergyProcessor::Default::VERBOSITY = 0;
const float ReissCavFreeEnergyProcessor::Default::SOLVENT_NUMBER_DENSITY
= 3.33253e-2;
const float ReissCavFreeEnergyProcessor::Default::PRESSURE = 1.01325e5;
const float ReissCavFreeEnergyProcessor::Default::ABSOLUTE_TEMPERATURE
= 298.0;
const float ReissCavFreeEnergyProcessor::Default::PROBE_RADIUS = 1.385;
ReissCavFreeEnergyProcessor::ReissCavFreeEnergyProcessor()
: EnergyProcessor()
{
setDefaultOptions();
valid_ = true;
}
ReissCavFreeEnergyProcessor::ReissCavFreeEnergyProcessor
(const ReissCavFreeEnergyProcessor& proc)
: EnergyProcessor(proc)
{
}
ReissCavFreeEnergyProcessor::~ReissCavFreeEnergyProcessor()
{
clear();
valid_ = false;
}
void ReissCavFreeEnergyProcessor::clear()
{
EnergyProcessor::clear();
setDefaultOptions();
valid_ = true;
}
const ReissCavFreeEnergyProcessor& ReissCavFreeEnergyProcessor::operator = (const ReissCavFreeEnergyProcessor& proc)
{
valid_ = proc.valid_;
energy_ = proc.energy_;
fragment_ = proc.fragment_;
return *this;
}
bool ReissCavFreeEnergyProcessor::operator == (const ReissCavFreeEnergyProcessor& proc) const
{
bool result;
if ((fragment_ == 0) && (proc.fragment_ == 0))
{
result = ((energy_ == proc.energy_) && (valid_ == proc.valid_));
}
else
{
if ((fragment_ == 0) || (proc.fragment_ == 0))
{
result = false;
}
else
{
result = ((*fragment_ == *proc.fragment_)
&& (energy_ == proc.energy_)
&& (valid_ == proc.valid_));
}
}
return result;
}
bool ReissCavFreeEnergyProcessor::finish()
{
// first check for user settings
int verbosity = (int) options.getInteger(Option::VERBOSITY);
// rho is the number density of the solvent (i. e. water) [1/m^3]
double rho = options.getReal(Option::SOLVENT_NUMBER_DENSITY) * 1e30;
// the pressure [ Pa ]
double P = options.getReal(Option::PRESSURE);
// the temperature [ K ]
double T = options.getReal(Option::ABSOLUTE_TEMPERATURE);
// the solvent radius [ A ]
double solvent_radius = options.getReal(Option::PROBE_RADIUS);
if (verbosity > 0)
{
Log.info() << "Using a probe radius of " << solvent_radius << " A" <<
endl;
}
// now compute some constant terms (names as in Pierotti, Chem. Rev.
// 76(6):717--726, 1976)
double sigma1 = 2 * solvent_radius * 1e-10; // [ m ]
double sigma1_2 = sigma1 * sigma1; // [ m^2 ]
double sigma1_3 = sigma1 * sigma1 * sigma1; // [ m^3 ]
double y = Constants::PI * sigma1_3 * (rho/6); // [ 1 ]
double y_frac = y/(1-y); // [ 1 ]
double y_frac_2 = y_frac * y_frac; // [ 1 ]
double NkT = Constants::AVOGADRO * Constants::BOLTZMANN * T; // [ J/mol ]
double NpiP = Constants::AVOGADRO * Constants::PI * P; // [ ? ]
if (verbosity > 0)
{
Log.info() << "y = " << y << endl;
Log.info() << "y_frac = " << y_frac << endl;
}
NumericalSAS sas_computer;
sas_computer.options[NumericalSAS::Option::PROBE_RADIUS ] = solvent_radius;
sas_computer.options[NumericalSAS::Option::COMPUTE_VOLUME] = false;
sas_computer(*fragment_);
HashMap<const Atom*,float> atom_areas = sas_computer.getAtomAreas();
// R is the sum of atom radius and probe radius [ m ]
double R;
// deltaGspher is the cavitatonal energy of a spherical solute [ J/mol ]
double deltaGspher;
// deltaGcav is the cavitatonal energy of the molecule [ J/mol ]
double deltaGcav = 0;
// now iterate over the atoms.
HashMap<const Atom*,float>::Iterator it = atom_areas.begin();
for (; it != atom_areas.end(); ++it)
{
R = it->first->getRadius() * 1e-10 + sigma1 / 2.0;
deltaGspher =
NkT * (-log(1.0 - y) + 4.5 * y_frac_2) - (NpiP * sigma1_3 / 6.0)
- (NkT * ((6.0 * y_frac + 18 * y_frac_2) / sigma1)
+ (NpiP * sigma1_2)) * R
+ (NkT * ((12.0 * y_frac + 18 * y_frac_2) / sigma1_2)
- (2.0 * NpiP * sigma1)) * (R * R)
+ 4.0 / 3.0 * NpiP * (R * R * R);
deltaGcav += it->second * 1e-20 /
( 4 * Constants::PI * R * R ) * deltaGspher;
}
// return energy in units of kJ/mol
energy_ = deltaGcav/1000;
return 1;
}
void ReissCavFreeEnergyProcessor::setDefaultOptions()
{
options.setDefaultInteger(Option::VERBOSITY, Default::VERBOSITY);
options.setDefaultReal(Option::SOLVENT_NUMBER_DENSITY, Default::SOLVENT_NUMBER_DENSITY);
options.setDefaultReal(Option::PRESSURE, Default::PRESSURE);
options.setDefaultReal(Option::ABSOLUTE_TEMPERATURE, Default::ABSOLUTE_TEMPERATURE);
options.setDefaultReal(Option::PROBE_RADIUS, Default::PROBE_RADIUS);
}
} // namespace BALL
|