1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/STRUCTURE/analyticalSES.h>
#include <BALL/KERNEL/atom.h>
#include <BALL/KERNEL/atomContainer.h>
namespace BALL
{
extern int connolly_ (int number_of_atoms, double *coordinates, double *radius,
double *volume, double *area, double probe, double exclude, double* atom_areas);
float calculateSESArea(const AtomContainer& fragment, float probe_radius)
{
// extract all atoms: iterate over all composites and
// check whether they are Atoms
vector<const Atom*> atoms;
AtomConstIterator it = fragment.beginAtom();
for (; +it; ++it)
{
if (it->getRadius() > 0.0)
{
atoms.push_back(&*it);
}
}
// if no atoms are found, return zero
if (atoms.empty())
{
return 0;
}
// create the field required by nsc and fill it with the atom coordinates
double* coordinates = new double[atoms.size() * 3];
double* radii = new double[atoms.size()];
double* atom_areas = new double[atoms.size()];
for (Size i = 0; i < atoms.size(); i++)
{
float tmp[3];
atoms[i]->getPosition().get(tmp);
coordinates[i * 3] = tmp[0];
coordinates[i * 3 + 1] = tmp[1];
coordinates[i * 3 + 2] = tmp[2];
radii[i] = atoms[i]->getRadius();
}
double area;
double volume;
int number_of_atoms = (int)atoms.size();
// int connolly_ (int number_of_atoms, double *coordinates, double *radius,
// double *volume, double *area, double probe, double exclude, double* atom_areas);
// call connolly_
connolly_(number_of_atoms, coordinates, radii,
&volume, &area, probe_radius, 0.0, atom_areas);
// free the input fields
delete [] coordinates;
delete [] radii;
delete [] atom_areas;
return area;
}
float calculateSESAtomAreas
(const AtomContainer& fragment, HashMap<const Atom*,float>& atom_areas, float probe_radius)
{
// extract all atoms: iterate over all composites and
// check whether they are Atoms
vector<const Atom*> atoms;
AtomConstIterator it = fragment.beginAtom();
for (; +it; ++it)
{
if (it->getRadius() > 0.0)
{
atoms.push_back(&*it);
}
}
// if no atoms are found, return zero
if (atoms.empty())
{
return 0;
}
// create the field required by nsc and fill it with the atom coordinates
double* coordinates = new double[atoms.size() * 3];
double* radii = new double[atoms.size()];
double* tmp_atom_areas = new double[atoms.size()];
for (Size i = 0; i < atoms.size(); i++)
{
float tmp[3];
atoms[i]->getPosition().get(tmp);
coordinates[i * 3] = tmp[0];
coordinates[i * 3 + 1] = tmp[1];
coordinates[i * 3 + 2] = tmp[2];
radii[i] = atoms[i]->getRadius();
}
double area;
double volume;
int number_of_atoms = (int)atoms.size();
// call connolly_
connolly_(number_of_atoms, coordinates, radii,
&volume, &area, probe_radius, 0.0, tmp_atom_areas);
// extract the atom areas and store them in the hash map
atom_areas.clear();
for (Position i = 0; i < atoms.size(); ++i)
{
atom_areas.insert(std::pair<const Atom*, float>(atoms[i], tmp_atom_areas[i]));
}
// free the input fields
delete [] coordinates;
delete [] radii;
delete [] tmp_atom_areas;
return area;
}
float calculateSESVolume
(const AtomContainer& fragment, float probe_radius)
{
// extract all atoms: iterate over all composites and
// check whether they are Atoms
vector<const Atom*> atoms;
AtomConstIterator it = fragment.beginAtom();
for (; +it; ++it)
{
if (it->getRadius() > 0.0)
{
atoms.push_back(&*it);
}
}
// if no atoms are found, return zero
if (atoms.empty())
{
return 0;
}
// create the field required by nsc and fill it with the atom coordinates
double* coordinates = new double[atoms.size() * 3];
double* radii = new double[atoms.size()];
double* tmp_atom_areas = new double[atoms.size()];
for (Size i = 0; i < atoms.size(); i++)
{
float tmp[3];
atoms[i]->getPosition().get(tmp);
coordinates[i * 3] = tmp[0];
coordinates[i * 3 + 1] = tmp[1];
coordinates[i * 3 + 2] = tmp[2];
radii[i] = atoms[i]->getRadius();
}
double area;
double volume;
int number_of_atoms = (int)atoms.size();
// call connolly_
connolly_(number_of_atoms, coordinates, radii,
&volume, &area, probe_radius, 0.0, tmp_atom_areas);
// free the input fields
delete [] coordinates;
delete [] radii;
delete [] tmp_atom_areas;
return volume;
}
} // namespace BALL
|