1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/STRUCTURE/atomBijection.h>
#include <BALL/STRUCTURE/geometricProperties.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/KERNEL/extractors.h>
#include <BALL/KERNEL/residue.h>
#include <BALL/DATATYPE/hashGrid.h>
using namespace std;
namespace BALL
{
AtomBijection::AtomBijection(AtomContainer& A, AtomContainer& B, bool limit_to_selection)
: std::vector<std::pair<Atom*, Atom*> >()
{
assignByName(A, B, limit_to_selection);
}
/* Calculate the root mean squared deviation */
double AtomBijection::calculateRMSD() const
{
double sum_of_squares = 0.0;
if (!empty())
{
for (Size i = 0; i < size(); ++i)
{
Vector3& r(operator [] (i).first->getPosition());
sum_of_squares += r.getSquareDistance(operator [] (i).second->getPosition());
}
// calculate mean square deviation
sum_of_squares = sqrt(sum_of_squares / (double)size());
}
// return RMSD
return sum_of_squares;
}
Size AtomBijection::assignByName(AtomContainer& A, AtomContainer& B, bool limit_to_selection)
{
// Clear old bijection.
clear();
// Remember the names of A and their atom pointers.
StringHashMap<Atom*> A_names;
for (AtomIterator ai = A.beginAtom(); +ai; ++ai)
{
A_names.insert(std::pair<String, Atom*>(ai->getFullName(Atom::ADD_VARIANT_EXTENSIONS_AND_ID), &*ai));
}
// Iterate over all atoms of B and try to find an
// atom in A identical names.
for (AtomIterator ai = B.beginAtom(); +ai; ++ai)
{
if (A_names.has(ai->getFullName(Atom::ADD_VARIANT_EXTENSIONS_AND_ID)))
{
if ( !limit_to_selection
|| (ai->isSelected() || A_names[ai->getFullName(Atom::ADD_VARIANT_EXTENSIONS_AND_ID)]->isSelected()))
{
// We found two matching atoms. Remember them.
push_back(AtomPair(A_names[ai->getFullName(Atom::ADD_VARIANT_EXTENSIONS_AND_ID)], &*ai));
}
// Throw away the hash map entry in order to avoid
// 1:n mappings.
A_names.erase(ai->getFullName(Atom::ADD_VARIANT_EXTENSIONS_AND_ID));
}
}
// Check whether we could map anything.
// If not, try to map by atom name alone.
if (size() == 0)
{
// Next stage: try to map by atom name only.
A_names.clear();
for (AtomIterator ai = A.beginAtom(); +ai; ++ai)
{
A_names.insert(std::pair<String, Atom*>(ai->getName(), &*ai));
}
clear();
for (AtomIterator ai = B.beginAtom(); +ai; ++ai)
{
if (A_names.has(ai->getName()))
{
if ( !limit_to_selection
|| (ai->isSelected() || A_names[ai->getName()]->isSelected()))
{
// We found two matching atoms. Remember them.
push_back(std::pair<Atom*, Atom*>(A_names[ai->getName()], &*ai));
}
// Throw away the hash map entry in order to avoid
// 1:n mappings.
A_names.erase(ai->getName());
}
}
}
return size();
}
Size AtomBijection::assignTrivial(AtomContainer& A, AtomContainer& B, bool limit_to_selection)
{
// Delete old bijection.
clear();
// Map in order -- first atom of A onto
// first atom of B and so on.
AtomIterator ai(A.beginAtom());
AtomIterator bi(B.beginAtom());
for (; +ai && +bi; ++ai, ++bi)
{
if ( !limit_to_selection
|| (ai->isSelected() || bi->isSelected()))
{
push_back(std::pair<Atom*, Atom*>(&*ai, &*bi));
}
}
return size();
}
Size AtomBijection::assignCAlphaAtoms(AtomContainer& A, AtomContainer& B, bool limit_to_selection)
{
// Delete old bijection.
clear();
// Extract all residues in A and B
ResidueList rla(residues(A));
ResidueList rlb(residues(B));
// Walk over the residues in parallel
ResidueList::iterator ita(rla.begin());
ResidueList::iterator itb(rlb.begin());
for (; ita != rla.end() && itb != rlb.end(); ++ita, ++itb)
{
// If the two residues do have an atom named CA, push back the pair.
Atom* caa = (*ita)->getAtom("CA");
Atom* cab = (*itb)->getAtom("CA");
if ( (caa != 0) && (cab != 0)
&& ( !limit_to_selection
|| (caa->isSelected() || cab->isSelected())))
{
push_back(AtomPair(caa, cab));
}
}
//
return size();
}
Size AtomBijection::assignBackboneAtoms(AtomContainer& A, AtomContainer& B, bool limit_to_selection)
{
// Delete old bijection.
clear();
// Extract all residues in A and B
ResidueList rla(residues(A));
ResidueList rlb(residues(B));
// Walk over the residues in parallel
ResidueList::iterator ita(rla.begin());
ResidueList::iterator itb(rlb.begin());
for (; ita != rla.end() && itb != rlb.end(); ++ita, ++itb)
{
// If the two residues do have backbone atoms (CA, C, N, O, H)
// map then onto each other.
Atom* a = (*ita)->getAtom("CA");
Atom* b = (*itb)->getAtom("CA");
if ( (a != 0) && (b != 0)
&& ( !limit_to_selection
|| (a->isSelected() || b->isSelected())))
{
push_back(AtomPair(a, b));
}
a = (*ita)->getAtom("C");
b = (*itb)->getAtom("C");
if ( (a != 0) && (b != 0)
&& ( !limit_to_selection
|| (a->isSelected() || b->isSelected())))
{
push_back(AtomPair(a, b));
}
a = (*ita)->getAtom("N");
b = (*itb)->getAtom("N");
if ( (a != 0) && (b != 0)
&& ( !limit_to_selection
|| (a->isSelected() || b->isSelected())))
{
push_back(AtomPair(a, b));
}
a = (*ita)->getAtom("O");
b = (*itb)->getAtom("O");
if ( (a != 0) && (b != 0)
&& ( !limit_to_selection
|| (a->isSelected() || b->isSelected())))
{
push_back(AtomPair(a, b));
}
a = (*ita)->getAtom("H");
b = (*itb)->getAtom("H");
if ( (a != 0) && (b != 0)
&& ( !limit_to_selection
|| (a->isSelected() || b->isSelected())))
{
push_back(AtomPair(a, b));
}
}
//
return size();
}
Size AtomBijection::assignAtomsByProperty(AtomContainer& A, AtomContainer& B)
{
// Delete old bijection.
clear();
// Map in order -- first atom of A onto
// first atom of B and so on.
AtomIterator ai(A.beginAtom());
AtomIterator bi(B.beginAtom());
for (; +ai && +bi; ++ai, ++bi)
{
if ( ai->hasProperty("ATOMBIJECTION_RMSD_SELECTION") || bi->hasProperty("ATOMBIJECTION_RMSD_SELECTION"))
{
push_back(std::pair<Atom*, Atom*>(&*ai, &*bi));
}
}
return size();
}
} // namespace BALL
|