File: geometricProperties.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (425 lines) | stat: -rw-r--r-- 9,516 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/STRUCTURE/geometricProperties.h>

#include <BALL/KERNEL/atom.h>
#include <BALL/KERNEL/fragment.h>
#include <BALL/KERNEL/residue.h>
#include <BALL/MATHS/matrix44.h>

#include <cstdio>
#include <cmath>
#include <deque>
#include <set>

namespace BALL 
{

	bool BoundingBoxProcessor::start()
		
	{
		lower_.set(std::numeric_limits<float>::max(), std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
		upper_.set(-std::numeric_limits<float>::max(), -std::numeric_limits<float>::max(), -std::numeric_limits<float>::max());
		return true;
	}

	bool BoundingBoxProcessor::finish()
		
	{
		if ((lower_.x == std::numeric_limits<float>::max()) && (lower_.y == std::numeric_limits<float>::max()) && (lower_.z == std::numeric_limits<float>::max())
				&& (upper_.x == -std::numeric_limits<float>::max()) && (upper_.y == -std::numeric_limits<float>::max()) && (upper_.z == -std::numeric_limits<float>::max()))
		{
			lower_.set(0, 0, 0);
			upper_.set(0, 0, 0);

			return false;
		}
		return true;
	}


	Processor::Result BoundingBoxProcessor::operator()(const Vector3& v)
		
	{

		if (lower_.x > v.x) 
		{
			lower_.x = v.x;
		}

		if (lower_.y > v.y) 
		{
			lower_.y = v.y;
		}

		if (lower_.z > v.z) 
		{
			lower_.z = v.z;
		}

		if (upper_.x < v.x) 
		{
			upper_.x = v.x;
		}

		if (upper_.y < v.y) 
		{
			upper_.y = v.y;
		}

		if (upper_.z < v.z) 
		{
			upper_.z = v.z;
		}

		return Processor::CONTINUE;
	}

	SimpleBox3 BoundingBoxProcessor::getBox() const
		
	{
		return SimpleBox3(lower_, upper_);
	}

	const Vector3& BoundingBoxProcessor::getLower() const
		
	{
		return lower_;
	}

	const Vector3& BoundingBoxProcessor::getUpper() const
		
	{
		return upper_;
	}


	//  GeometricCenterProcessor
	bool GeometricCenterProcessor::start()
		
	{
		center_.set(0, 0, 0);
		n_ = 0;

		return true;
	}

	bool GeometricCenterProcessor::finish()
		
	{
		if (n_ != 0)
		{
			center_ /= (float)n_;
		}

		return true;
	}

	Processor::Result GeometricCenterProcessor::operator()(const Vector3& v)
		
	{
		center_ += v;
		n_++;

		return Processor::CONTINUE;
	}

	Vector3& GeometricCenterProcessor::getCenter()
		
	{
		return center_;
	}


	// ---------- FragmentDistanceCollector -----------------

	// default constructor
	FragmentDistanceCollector::FragmentDistanceCollector() 
		
		:	reference_composite_(0)
	{
	}

	FragmentDistanceCollector::FragmentDistanceCollector(const Composite& composite) 
		
		:	reference_composite_(&composite),
			squared_distance_(0)
	{
	}

	FragmentDistanceCollector::FragmentDistanceCollector(const Composite& composite,float distance) 
		
		:	reference_composite_(&composite),
			squared_distance_(distance * distance)
	{
	}

	bool FragmentDistanceCollector::start()
		
	{
		// clear the array containing the collected fragments
		fragments.clear();

		// if no reference fragment is set, return immediately
		return reference_composite_ != 0;
	}

	float FragmentDistanceCollector::getDistance() const
		
	{
		return sqrt(squared_distance_);
	}

	void FragmentDistanceCollector::setDistance(float distance)
		
	{
		squared_distance_ = distance * distance;
	}

	bool FragmentDistanceCollector::finish()
		
	{
		bool                              collect_it = false;
		AtomConstIterator                 atom_iterator2;
		const Fragment*                   mol_fragment;
		Composite::CompositeConstIterator composite_it;
		vector<const Atom*>               reference_atoms;
		const Atom*                       atom_ptr;
		GeometricCenterProcessor          center_processor;
		Vector3                           center;
		float                             fragment_radius;
		float                             difference;

		Size                              i, j;
		Size                              size;


		for (composite_it = reference_composite_->beginComposite(); 
				 composite_it != reference_composite_->endComposite(); ++composite_it) 
		{
            if (RTTI::isKindOf<Atom>(&*composite_it))
			{
				atom_ptr = RTTI::castTo<Atom>(*composite_it);
				reference_atoms.push_back(atom_ptr);	
			}
		}

		Size    number_of_atoms = 0;
		Vector3 atom_position;
		float   distance = sqrt(squared_distance_);

		number_of_atoms = (Size)reference_atoms.size();
		size = (Size)all_fragments_.size();

		for (i = 0; i < size; i++) 
		{
			mol_fragment = all_fragments_[i]; 
			mol_fragment->apply(center_processor);
			center = center_processor.getCenter();
			fragment_radius = 0;

			for (atom_iterator2 = mol_fragment->beginAtom(); +atom_iterator2; ++ atom_iterator2)
			{
				if ((difference = (*atom_iterator2).getPosition().getSquareDistance(center)) > fragment_radius)
				{
					fragment_radius = difference;        
				}
			}
			fragment_radius = sqrt(fragment_radius);

			for (j = 0, collect_it = false; j < number_of_atoms && !collect_it; j++)
			{
				atom_position = reference_atoms[j]->getPosition();
				 
				if (atom_position.getDistance(center) <= (distance + fragment_radius)) 
				{
					for (atom_iterator2 = mol_fragment->beginAtom(); 
							 +atom_iterator2 && (!collect_it); ++ atom_iterator2)
					{
						if ((*atom_iterator2).getPosition().getSquareDistance(atom_position) < squared_distance_) 
						{
							fragments.push_back(mol_fragment);
							collect_it = true;
						}
					}
				}
			}
		}

	 all_fragments_.clear();
	 return true;
	}

	Processor::Result FragmentDistanceCollector::operator()(const Composite& composite)
		
	{
		const Fragment* mol_fragment = dynamic_cast<const Fragment*>(&composite);
		if (mol_fragment)
		{
			all_fragments_.push_back(mol_fragment);
		}

		return Processor::CONTINUE;
	}

	Size FragmentDistanceCollector::getNumberOfFragments()
		
	{
		return (Size)fragments.size();
	}

	void FragmentDistanceCollector::setComposite(const Composite& composite)
		
	{
		reference_composite_ = &composite;
	}

	const Composite* FragmentDistanceCollector::getComposite() const
		
	{
		return reference_composite_;
	}

  // Calculate the torsion angle between four atoms
  Angle calculateTorsionAngle(const Atom& a1, const Atom& a2, const Atom& a3, const Atom& a4)
	{
		Vector3 a12(a2.getPosition() - a1.getPosition());
Vector3 a23(a3.getPosition() - a2.getPosition());
		Vector3 a34(a4.getPosition() - a3.getPosition());

		Vector3 n12(a12 % a23);
		Vector3 n34(a23 % a34);

		if (n12 == Vector3::getZero() ||
				n34 == Vector3::getZero())
		{
			throw(Exception::IllegalPosition(__FILE__, __LINE__, 0, 0, 0));
		}

		n12.normalize();
		n34.normalize();

		Vector3 cross_n12_n34(n12 % n34);
		float direction = cross_n12_n34 * a23;
		float scalar_product = n12 * n34;

		if (scalar_product > 1.0)
		{
			scalar_product = 1.0;
		}
		if (scalar_product < -1.0)
		{
			scalar_product = -1.0;
		}
		Angle a(acos(scalar_product));

		if (direction < 0.0)
		{
			a = -1.0 * (float)a;
		}

		return a;
	}

	bool setTorsionAngle(const Atom& a1, const Atom& a2, Atom& a3, const Atom& a4, Angle angle)
	{
		//We first need to determine the part of the molecule which needs to be
		//rotated. this will be done by a simple BFS.
		std::deque<Atom*> bfs_queue;

		//This set containes the atoms which should be rotated
		std::set<Atom*> component;

		//The starting point needs to be handled explicitly, as
		//we may not consider a2
		component.insert(&a3);

		for(unsigned int i = 0; i < a3.countBonds(); ++i)
		{
			if(a3.getPartnerAtom(i) != &a2)
			{
				component.insert(a3.getPartnerAtom(i));
				bfs_queue.push_back(a3.getPartnerAtom(i));
			}
		}

		//Perform the BFS
		while(!bfs_queue.empty())
		{
			Atom* atom = bfs_queue.front();
			bfs_queue.pop_front();

			for(unsigned int i = 0; i < atom->countBonds(); ++i)
			{
				//If a2 is in the same connected component as a3, we cannot
				//set the torision angle
				if(atom->getPartnerAtom(i) == &a2)
				{
					return false;
				}

				if(component.find(atom->getPartnerAtom(i)) == component.end())
				{
					component.insert(atom->getPartnerAtom(i));
					bfs_queue.push_back(atom->getPartnerAtom(i));
				}
			}
		}

		//Now compute the current torsion angle and compute the residual rotation
		angle -= calculateTorsionAngle(a1, a2, a3, a4);

		//Setup the rotation. We first need to make a3 the origin
		//of the selected component, then apply the rotation and
		//subsequently translate a3 to its original position.
		Matrix4x4 rotation;
		rotation.rotate(angle, a3.getPosition() - a2.getPosition());
		Matrix4x4 trans;
		trans.setTranslation(-a3.getPosition());
		rotation *= trans;
		trans.setTranslation(a3.getPosition());
		rotation = trans * rotation;


		for(std::set<Atom*>::iterator it = component.begin(); it != component.end(); ++it)
		{
			(*it)->setPosition(rotation * (*it)->getPosition());
		}

		return true;
	}

  // Calculate the bond angle between three atoms
  Angle calculateBondAngle(const Atom& a1, const Atom& a2, const Atom& a3)
	{
		// two atoms can't have the same position
		if (a1.getPosition() == a2.getPosition() ||
				a3.getPosition() == a2.getPosition())
		{
			throw(Exception::IllegalPosition(__FILE__, __LINE__, a2.getPosition().x,
a2.getPosition().y, a2.getPosition().z));
		}

		Vector3 a12(a1.getPosition() - a2.getPosition());
		Vector3 a23(a3.getPosition() - a2.getPosition());

		a12.normalize();
		a23.normalize();

		float scalar_product = a12 * a23;
		if (scalar_product > 1.0)
		{
			scalar_product = 1.0;
		}
		if (scalar_product < -1.0)
		{
			scalar_product = -1.0;
		}
		Angle a(acos(scalar_product));

		return a;
	}

} // namespace BALL