File: numericalSAS.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 239,888 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 95
file content (298 lines) | stat: -rw-r--r-- 10,173 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/STRUCTURE/numericalSAS.h>
#include <BALL/STRUCTURE/triangulatedSurface.h>
#include <BALL/STRUCTURE/geometricProperties.h>
#include <BALL/KERNEL/atom.h>
#include <BALL/DATATYPE/hashMap.h>
#include <BALL/DATATYPE/hashGrid.h>
#include <BALL/KERNEL/atomContainer.h>
#include <BALL/MATHS/surface.h>

namespace BALL
{
	const String NumericalSAS::Option::COMPUTE_AREA      					= "compute_area";
	const String NumericalSAS::Option::COMPUTE_VOLUME    					= "compute_volume";
	const String NumericalSAS::Option::COMPUTE_SURFACE   					= "compute_surface";
	const String NumericalSAS::Option::COMPUTE_SURFACE_PER_ATOM   = "compute_surface_per_atom";
	const String NumericalSAS::Option::COMPUTE_SURFACE_MAP				= "compute_surface_map";
	const String NumericalSAS::Option::NUMBER_OF_POINTS  					= "number_of_points";
	const String NumericalSAS::Option::PROBE_RADIUS      					= "probe_radius";

	const bool   NumericalSAS::Default::COMPUTE_AREA     					= true;
	const bool   NumericalSAS::Default::COMPUTE_VOLUME   					= true;
	const bool   NumericalSAS::Default::COMPUTE_SURFACE  					= false;
	const bool   NumericalSAS::Default::COMPUTE_SURFACE_PER_ATOM  = false;
	const bool   NumericalSAS::Default::COMPUTE_SURFACE_MAP			  = false;
	const Size   NumericalSAS::Default::NUMBER_OF_POINTS 					= 400;
	const float  NumericalSAS::Default::PROBE_RADIUS     					= 1.5;

	NumericalSAS::NumericalSAS()
		: total_area_(0.)
	{
		setDefaultOptions_();
	}

	NumericalSAS::NumericalSAS(const Options& options)
		:	options(options),
			total_area_(0.)
	{
		setDefaultOptions_();
	}

	NumericalSAS::~NumericalSAS()
	{
	}

	void NumericalSAS::operator() (const AtomContainer& fragment)
	{
		fragment_ = &fragment;

		atom_areas_.clear();
		total_area_ = 0.;

		atom_volumes_.clear();
		total_volume_ = 0.;

		surface_.clear();
		atom_surfaces_.clear();

		atom_surface_map_.clear();
		
		bool compute_area    					= options.getBool(Option::COMPUTE_AREA   					);
		bool compute_volume  					= options.getBool(Option::COMPUTE_VOLUME 					);
		bool compute_surface			 		= options.getBool(Option::COMPUTE_SURFACE					);
		bool compute_surface_per_atom = options.getBool(Option::COMPUTE_SURFACE_PER_ATOM);
		bool compute_surface_map			= options.getBool(Option::COMPUTE_SURFACE_MAP     );

		Size num_points_requested = options.getInteger(Option::NUMBER_OF_POINTS);
		float probe_radius = options.getReal(Option::PROBE_RADIUS);

		// precompute a triangulated sphere
		TriangulatedSphere sphere_template_t;
		Size num_points = computeSphereTesselation_(sphere_template_t, num_points_requested);		

		float unit_area_per_point = 4.*Constants::PI/num_points;
		float unit_volume         = 4.*Constants::PI/(3.*num_points);

		// it's simpler to work with surfaces later
		Surface sphere_template;
		sphere_template_t.exportSurface(sphere_template);

		// a safety threshold
		float epsilon = 0.5;

		// determine the maximum SAS radius
		float max_radius = 0;
		for (AtomConstIterator at_it = fragment.beginAtom(); +at_it; ++at_it)
		{
			max_radius = std::max(max_radius, at_it->getRadius());
		}
		max_radius += probe_radius;

		// find the center of gravity
		GeometricCenterProcessor gcp;

		// ugly, but necessary; and actually not a problem, since
		// the geometric center processor does *really* change nothing
		const_cast<AtomContainer&>(fragment).apply(gcp);

		Vector3& center_of_gravity = gcp.getCenter();

		// build the containing box
		BoundingBoxProcessor bpp;

		// ugly, but necessary; and actually not a problem, since
		// the bounding box processor does *really* change nothing
		const_cast<AtomContainer&>(fragment).apply(bpp);

		// and a hash grid containing all atoms
		Vector3 grid_origin = bpp.getLower() - Vector3(max_radius + epsilon);
		HashGrid3<Atom const*> atom_grid(grid_origin, bpp.getUpper() - grid_origin + Vector3(max_radius + epsilon), 2 * max_radius + epsilon);

		for (AtomConstIterator at_it = fragment.beginAtom(); +at_it; ++at_it)
		{
			if (at_it->getRadius() > 0.001)
			{
				atom_grid.insert(at_it->getPosition(), &(*at_it));
			}
		}

		// now iterate over all atoms and determine their possibly occluding neighbours
		for (AtomConstIterator at_it = fragment.beginAtom(); +at_it; ++at_it)
		{
			if (at_it->getRadius() <= 0.001)
			{
				continue;
			}

			Vector3 current_center = at_it->getPosition();
			float   current_radius = at_it->getRadius()+probe_radius;

			if (current_radius == probe_radius)
				continue;

			if (compute_surface_map)
				atom_surface_map_.push_back(std::pair<Vector3, Surface>(at_it->getPosition(), Surface()));

			std::vector<Atom const*> neighbours;

			// find the atom's box
			HashGridBox3<Atom const*>* box = atom_grid.getBox(at_it->getPosition());
			if(!box)
			{
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "NumericalSAS error", "Cannot find atom in hashgrid!");
			}

			// and iterate over all boxes in the neighbourhood, including the box itself
			HashGridBox3<Atom const*>::BoxIterator neighbour_box = box->beginBox();

			for (; +neighbour_box; ++neighbour_box)
			{
				// iterate over all atoms of the current neighbouring box
				HashGridBox3<Atom const*>::DataIterator data_it;
				for (data_it = neighbour_box->beginData(); +data_it; ++data_it)
				{
					if (*data_it == &*at_it)
						continue;

					// do the atoms overlap at all?
					float radius_sum = current_radius + (*data_it)->getRadius() + probe_radius;
					if ((current_center-(*data_it)->getPosition()).getSquareLength() <= radius_sum*radius_sum)
						neighbours.push_back(*data_it);
				}
			} // end loop over neighbour boxes

			Size num_occluded=0;
			Vector3 dr(0.); // volume element

			// now we know all the potentially occluding atoms => test each point for overlap
			for (Size current_point_index=0; current_point_index<num_points; ++current_point_index)
			{
				bool is_occluded = false;
				Vector3 current_point = sphere_template.vertex[current_point_index]*current_radius + current_center;

				for (Size current_neighbour=0; current_neighbour<neighbours.size(); ++current_neighbour)
				{
					float partner_radius = neighbours[current_neighbour]->getRadius() + probe_radius;
					if ((current_point-neighbours[current_neighbour]->getPosition()).getSquareLength() <= partner_radius*partner_radius)
					{
						++num_occluded;
						is_occluded = true;
						break;
					}
				}

				if (!is_occluded)
				{
					if (compute_volume)
					{
						dr += sphere_template.vertex[current_point_index];
					}

					if (compute_surface)
					{
						surface_.vertex.push_back(current_point);
						surface_.normal.push_back(sphere_template.vertex[current_point_index]*current_radius*current_radius*unit_area_per_point);
					}

					if (compute_surface_per_atom)
					{
						Surface& current_surface = atom_surfaces_[&*at_it];
						current_surface.vertex.push_back(current_point);
						current_surface.normal.push_back(sphere_template.vertex[current_point_index]);
					}

					if (compute_surface_map)
					{
						Surface& current_surface = (--atom_surface_map_.end())->second;
						current_surface.vertex.push_back(current_point);
						current_surface.normal.push_back(sphere_template.vertex[current_point_index]);
					}
				}
			}

			if (compute_area)
			{
				float atom_area = current_radius*current_radius * unit_area_per_point * (num_points - num_occluded);
				total_area_ += atom_area;

				atom_areas_[&*at_it] = atom_area;
			}

			if (compute_volume)
			{
				float atom_volume = current_radius * current_radius * unit_volume
																					 * (  (current_center-center_of_gravity)*dr 
																							 + current_radius * (num_points - num_occluded));
				total_volume_ += atom_volume;
			}

			if (compute_surface_per_atom)
			{
				float length = current_radius*current_radius * unit_area_per_point;
				Surface& current_surface = atom_surfaces_[&*at_it];
				for (Position i=0; i<current_surface.normal.size(); ++i)
					current_surface.normal[i] *= length;
			}

			if (compute_surface_map)
			{
				float length = current_radius*current_radius * unit_area_per_point;
				Surface& current_surface = (--atom_surface_map_.end())->second;
				for (Position i=0; i<current_surface.normal.size(); ++i)
					current_surface.normal[i] *= length;
			}
		}
	}

	void NumericalSAS::setDefaultOptions_()
	{
		options.setDefault(Option::COMPUTE_AREA,     					Default::COMPUTE_AREA);
		options.setDefault(Option::COMPUTE_VOLUME,  					Default::COMPUTE_VOLUME);
		options.setDefault(Option::COMPUTE_SURFACE,  					Default::COMPUTE_SURFACE);
		options.setDefault(Option::COMPUTE_SURFACE_PER_ATOM,  Default::COMPUTE_SURFACE_PER_ATOM);
		options.setDefault(Option::COMPUTE_SURFACE_MAP,  			Default::COMPUTE_SURFACE_MAP);

		options.setDefault(Option::NUMBER_OF_POINTS, 					Default::NUMBER_OF_POINTS);
		options.setDefault(Option::PROBE_RADIUS,     					Default::PROBE_RADIUS);
	}

	Size NumericalSAS::computeSphereTesselation_(TriangulatedSphere& result, int num_points)
	{
		// first, we decide whether to use an icosahedron or a pentakis dodecahedron
		// for the tesselation; this only depends on which comes closer to the number
		// of requested points
		Size levels_icosahedron  					= (Size)ceil(log((float)(num_points - 2)/10.)/log(4.f));
		Size levels_pentakis_dodecahedron = (Size)ceil(log((float)(num_points - 2)/30.)/log(4.f));

		Size num_points_icosahedron 					= (Size)(10*pow(4.f, (int)levels_icosahedron          )+2);
		Size num_points_pentakis_dodecahedron = (Size)(30*pow(4.f, (int)levels_pentakis_dodecahedron)+2);

		// both numbers are >= num_points -> take the smaller one
		bool use_icosahedron = num_points_icosahedron < num_points_pentakis_dodecahedron;

		Size result_size;
		if (use_icosahedron)
		{
			result.icosaeder();
			if (levels_icosahedron > 0)
				result.refine(levels_icosahedron);

			result_size = num_points_icosahedron;
		}
		else
		{
			result.pentakisDodecaeder();
			if (levels_pentakis_dodecahedron > 0)
				result.refine(levels_pentakis_dodecahedron);

			result_size = num_points_pentakis_dodecahedron;
		}

		return result_size;
	}	

} // namespace BALL