1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/STRUCTURE/ringAnalyser.h>
#include <BALL/COMMON/exception.h>
#include <BALL/CONCEPT/property.h>
#include <BALL/KERNEL/bond.h>
#include <BALL/KERNEL/forEach.h>
#include <BALL/QSAR/ringPerceptionProcessor.h>
//#define BALL_DEBUG_RINGANALYSER
#ifdef BALL_DEBUG_RINGANALYSER
# define DEBUG(a) Log.info() << a << std::endl;
#else
# define DEBUG(a)
#endif
using namespace std;
namespace BALL
{
RingAnalyser::Ring::Ring()
: PropertyManager(),
atoms(),
type(NONE),
shared_bonds()
{
}
RingAnalyser::Ring::Ring(std::vector<Atom*> const& atoms_)
: PropertyManager(),
atoms(atoms_),
type(NONE),
shared_bonds()
{
}
Position RingAnalyser::Ring::predecessor(Position i) const
{
if (i >= atoms.size())
throw (Exception::IndexOverflow(__FILE__, __LINE__, i, atoms.size()));
return ((i+atoms.size()-1) % atoms.size());
}
Position RingAnalyser::Ring::successor(Position i) const
{
if (i >= atoms.size())
throw (Exception::IndexOverflow(__FILE__, __LINE__, i, atoms.size()));
return ((i+1) % atoms.size());
}
RingAnalyser::RingAnalyser()
: rings_(),
ring_systems_()
{}
RingAnalyser::~RingAnalyser()
{}
void RingAnalyser::clear()
{
rings_.clear();
ring_systems_.clear();
peeling_order_.clear();
rings_per_bond_.clear();
}
bool RingAnalyser::start()
{
clear();
return true;
}
Processor::Result RingAnalyser::operator () (AtomContainer& ac)
{
// compute the smallest set of smallest rings
RingPerceptionProcessor rpp;
std::vector<std::vector<Atom*> > sssr;
rpp.calculateSSSR(sssr, ac);
rings_.resize(sssr.size());
// and convert it into our own data structure
for (Position i=0; i<sssr.size(); ++i)
{
rings_[i].atoms = sssr[i];
}
// sequence the rings in the sssr to prepare them for analysis and construction
for (Position i=0; i<rings_.size(); ++i)
sequenceRing(rings_[i].atoms);
// cluster the rings into ring systems joined by at least one atom
clusterRings_();
// find bonds shared between rings
findSharedBonds_();
// compute the ring types
peelRings_();
return Processor::BREAK;
}
bool RingAnalyser::finish()
{
return true;
}
Size RingAnalyser::getNumberOfRingSystems()
{
return ring_systems_.size();
}
std::vector<RingAnalyser::Ring> RingAnalyser::getRingSystem(Position i)
{
if (i >= ring_systems_.size())
{
throw (Exception::IndexOverflow(__FILE__, __LINE__, i, ring_systems_.size()));
}
std::vector<Position> ring_system = ring_systems_[i];
std::vector<Ring> result;
for (Position j=0; j<ring_system.size(); ++j)
result.push_back(rings_[ring_system[j]]);
return result;
}
std::vector<Position> RingAnalyser::getPeelingOrder(Position i)
{
if (i >= peeling_order_.size())
{
throw (Exception::IndexOverflow(__FILE__, __LINE__, i, peeling_order_.size()));
}
return peeling_order_[i];
}
// check wether the ring appears in the Ring-Template-Database
bool RingAnalyser::assignRTD_(std::list<Position>& /* unassigned_rings */)
{
/// ???? TODO: add ring template database
return false;
}
// check, whether an atom is part of a certain ring
bool RingAnalyser::isInRing(const Atom* atom, vector<Atom*> const& ring) const
{
for (vector<Atom*>::size_type i = 0; i != ring.size(); i++)
{
if (ring[i] == atom)
{
return true;
}
}
return false;
}
bool RingAnalyser::isInRingSystem(const Atom* atom, Index i) const
{
std::vector<Position> const& ring_system = ring_systems_[i];
for (Position j=0; j<ring_system.size(); ++j)
{
if (isInRing(atom, rings_[ring_system[j]].atoms))
return true;
}
return false;
}
void RingAnalyser::sequenceRing(std::vector<Atom*>& ring)
{
// the atom we start with stays in its place
Atom* start_atom = ring[0];
// put all other atoms into a list
std::list<Atom*> ring_atoms;
for (Position k = 1; k < ring.size(); k++)
{
ring_atoms.push_back(ring[k]);
}
Size last_index = 0;
Atom* last_atom = start_atom;
while(!ring_atoms.empty())
{
for (std::list<Atom*>::iterator ring_it = ring_atoms.begin();
ring_it != ring_atoms.end(); ++ring_it)
{
if (last_atom->isBoundTo(**ring_it))
{
ring[++last_index] = *ring_it;
last_atom = *ring_it;
ring_atoms.erase(ring_it);
break;
}
}
}
DEBUG("\t-*-[sequenceRings]:\tRing has been sequenced." << endl)
}
// clustering rings into connected ringsystems
void RingAnalyser::clusterRings_()
{
// compute all ring memberships
HashMap<Atom*, std::set<Position> > rings_per_atom;
for (Position i=0; i<rings_.size(); ++i)
{
std::vector<Atom*>& current_ring = rings_[i].atoms;
for (Position j=0; j<current_ring.size(); ++j)
{
rings_per_atom[current_ring[j]].insert(i);
}
}
// start at the beginning of the list of sets and compare it with all later sets
for (HashMap<Atom*, std::set<Position> >::iterator first_set_it = rings_per_atom.begin();
first_set_it != rings_per_atom.end(); ++first_set_it)
{
HashMap<Atom*, std::set<Position> >::iterator second_set_it = first_set_it;
++second_set_it;
for (; second_set_it != rings_per_atom.end(); ++second_set_it)
{
// do the sets have a non-empty intersection?
bool intersection_found = false;
for(std::set<Position>::iterator member_it = first_set_it->second.begin();
member_it != first_set_it->second.end(); ++member_it)
{
if (find(second_set_it->second.begin(), second_set_it->second.end(), *member_it) != second_set_it->second.end())
{
intersection_found = true;
break;
}
}
if (intersection_found)
{
std::set<Position> new_set;
set_union(first_set_it->second.begin(), first_set_it->second.end(),
second_set_it->second.begin(), second_set_it->second.end(),
std::inserter(new_set, new_set.begin()));
first_set_it->second.clear();
second_set_it->second = new_set;
break;
}
}
}
for (HashMap<Atom*, std::set<Position> >::iterator merged_set_it = rings_per_atom.begin();
merged_set_it != rings_per_atom.end(); ++merged_set_it)
{
if (merged_set_it->second.size() != 0)
{
ring_systems_.push_back(std::vector<Position>());
for (std::set<Position>::iterator it = merged_set_it->second.begin();
it != merged_set_it->second.end(); ++it)
{
ring_systems_.back().push_back(*it);
}
}
}
DEBUG("\t-*-[RingAnalyser]:\t" << ring_systems_.size() << " ringsystems found. ")
}
// Find the bonds shared between rings in the sssr
// Precondition: the rings must be sorted such that a_i, a_i+1 share a bond (and a_size-1, a_0)
void RingAnalyser::findSharedBonds_()
{
rings_per_bond_.clear();
for (Position current_system_index = 0;
current_system_index < ring_systems_.size(); ++current_system_index)
{
std::vector<Position>& current_system = ring_systems_[current_system_index];
for (Position current_ring_index = 0; current_ring_index < current_system.size(); ++current_ring_index)
{
std::vector<Atom*>& current_ring = rings_[current_system[current_ring_index]].atoms;
for (Position current_atom=0; current_atom < current_ring.size() - 1; ++current_atom)
{
Atom const* first_atom = current_ring[current_atom ];
Atom const* second_atom = current_ring[current_atom+1];
Bond const* bond = first_atom->getBond(*second_atom);
if (!rings_per_bond_.has(bond))
{
rings_per_bond_[bond] = std::deque<Position>();
}
rings_per_bond_[bond].push_back(current_system[current_ring_index]);
}
Atom const* first_atom = current_ring.back();
Atom const* second_atom = current_ring[0];
Bond const* bond = first_atom->getBond(*second_atom);
if (!rings_per_bond_.has(bond))
{
rings_per_bond_[bond] = std::deque<Position>();
}
rings_per_bond_[bond].push_back(current_system[current_ring_index]);
}
for (HashMap<Bond const*, std::deque<Position> >::iterator b_it = rings_per_bond_.begin();
b_it != rings_per_bond_.end();
++b_it)
{
if (b_it->second.size() > 1)
{
for (std::deque<Position>::iterator ring_it = b_it->second.begin();
ring_it != b_it->second.end(); ++ring_it)
{
rings_[*ring_it].shared_bonds.insert(b_it->first);
}
}
}
}
}
bool RingAnalyser::isCentralRing_(std::list<Position>::iterator ring, std::list<Position>& unassigned_rings)
{
// find an arbitrary other ring
std::list<Position>::iterator next_ring = unassigned_rings.begin();
while (next_ring == ring) ++next_ring;
if (next_ring == unassigned_rings.end())
{
// this should never happen!
Log.warn() << "isCentralRing_ failed!" << std::endl;
return false;
}
// look for neighbours
HashMap<Atom*, std::list<Position> > atom_to_rings;
for (std::list<Position>::iterator r_it = unassigned_rings.begin(); r_it != unassigned_rings.end(); ++r_it)
{
if (*r_it != *ring)
{
Ring& current_ring = rings_[*r_it];
for (Position i=0; i<current_ring.atoms.size(); ++i)
{
Atom* atom = current_ring.atoms[i];
if (!atom_to_rings.has(atom))
atom_to_rings[atom] = std::list<Position>();
atom_to_rings[atom].push_back(*r_it);
}
}
}
std::set<Position> component;
std::set<Position> to_test;
HashSet<Position> done;
to_test.insert(*next_ring);
while (!to_test.empty())
{
Position next = *(to_test.begin());
to_test.erase(to_test.begin());
done.insert(next);
component.insert(next);
Ring& next_ring = rings_[next];
for (Position i=0; i<next_ring.atoms.size(); ++i)
{
std::list<Position>& neighbours = atom_to_rings[next_ring.atoms[i]];
for (std::list<Position>::iterator n_it = neighbours.begin(); n_it != neighbours.end(); ++n_it)
{
if (*n_it != next && !done.has(*n_it))
to_test.insert(*n_it);
}
}
}
return (component.size() < unassigned_rings.size() - 1);
}
bool RingAnalyser::peelNextRing_(std::list<Position>& unassigned_rings, bool peel_bridged)
{
// if there is only one ring left, it is of type CORE and we are done...
if (unassigned_rings.size() == 1)
{
rings_[*(unassigned_rings.begin())].type = CORE;
peeling_order_.back().push_back(*(unassigned_rings.begin()));
unassigned_rings.clear();
return true;
}
// otherwise, check whether the remaining rings can be found in the template database
if (assignRTD_(unassigned_rings))
return true;
// ok, we have to look a little deeper...
Size min_bond_num = 1000;
std::list<Position>::iterator min_ring_it = unassigned_rings.end();
Size min_partner_num = 1000;
std::list<Position>::iterator min_bridge_it = unassigned_rings.end();
// examine every unassigned ring
for (std::list<Position>::iterator current_ring_it = unassigned_rings.begin();
current_ring_it != unassigned_rings.end(); ++current_ring_it)
{
Position ring_index = *current_ring_it;
std::set<Bond const*> shared_bonds = rings_[ring_index].shared_bonds;
if (shared_bonds.empty())
{
// since we know our ring system has more than one ring (otherwise, we would
// already have assigned CORE), this has to be a SPIRO ring.
//
// we can obviously not hope to find a ring with less bonds to the ring system,
// so we can happily peel it away
rings_[ring_index].type = SPIRO;
peeling_order_.back().push_back(ring_index);
unassigned_rings.erase(current_ring_it);
return true;
}
// find bonds shared with unassigned neighbours
std::set<Bond const*> shared_unassigned_bonds;
Size num_unassigned_neighbours = 0;
for (std::set<Bond const*>::iterator b_it = shared_bonds.begin(); b_it != shared_bonds.end(); ++b_it)
{
std::deque<Position>& neighbours = rings_per_bond_[*b_it];
bool still_shared = false;
for (std::deque<Position>::iterator n_it = neighbours.begin(); n_it != neighbours.end(); ++n_it)
{
if (rings_[*n_it].type == NONE)
{
still_shared = true;
++num_unassigned_neighbours;
}
}
if (still_shared)
shared_unassigned_bonds.insert(*b_it);
}
// does r bridge other unassigned rings?
// if more than one shared bond is found, check, whether the bonds are neighbours
// if they are, its a bridged ring, otherwise the ring is fused to more than one other ring
bool neighboring_bonds = false;
if (shared_unassigned_bonds.size() > 1) // a single bond can't bridge...
{
std::set<Bond const*>::iterator first_bond = shared_unassigned_bonds.begin();
for (; first_bond != shared_unassigned_bonds.end() && !neighboring_bonds; ++first_bond)
{
std::set<Bond const*>::iterator second_bond = first_bond;
++second_bond;
for (; second_bond != shared_unassigned_bonds.end(); ++second_bond)
{
Atom const* a_11 = (*first_bond)->getFirstAtom();
Atom const* a_12 = (*first_bond)->getSecondAtom();
Atom const* a_21 = (*second_bond)->getFirstAtom();
Atom const* a_22 = (*second_bond)->getSecondAtom();
if ( (a_11 == a_21) || (a_11 == a_22) || (a_12 == a_21) || (a_12 == a_22) )
{
neighboring_bonds = true;
break;
}
}
}
}
if (isCentralRing_(current_ring_it, unassigned_rings))
continue; // ignore central rings
if (neighboring_bonds) {
// if we allow peeling of bridged rings, we may need this one later
if (num_unassigned_neighbours < min_partner_num)
{
min_partner_num = num_unassigned_neighbours;
min_bridge_it = current_ring_it;
}
continue;
}
// if we arrived here, let's see if this ring is a better candidate than all previous ones
if (shared_unassigned_bonds.size() < min_bond_num)
{
min_bond_num = shared_unassigned_bonds.size();
min_ring_it = current_ring_it;
}
}
// did we find a suitable candidate?
if (min_ring_it != unassigned_rings.end())
{
// peel it away
rings_[*min_ring_it].type = FUSED;
peeling_order_.back().push_back(*min_ring_it);
unassigned_rings.erase(min_ring_it);
return true;
}
// or a bridged one?
if (peel_bridged && min_bridge_it != unassigned_rings.end())
{
// peel it away
rings_[*min_bridge_it].type = BRIDGED;
peeling_order_.back().push_back(*min_bridge_it);
unassigned_rings.erase(min_bridge_it);
return true;
}
// nope? what a pity.
return false;
}
void RingAnalyser::peelRings_()
{
// iterate over all ring systems
for (Position current_system_index = 0; current_system_index < ring_systems_.size(); ++current_system_index)
{
peeling_order_.push_back(std::vector<Position>());
std::vector<Position>& current_system = ring_systems_[current_system_index];
// Initialize all rings
for (Position current_ring_index = 0; current_ring_index < current_system.size(); ++current_ring_index)
{
Ring& current_ring = rings_[current_system[current_ring_index]];
current_ring.type = NONE;
}
// Now try the peeling
std::list<Position> unassigned_rings;
std::copy(current_system.begin(), current_system.end(), std::back_inserter(unassigned_rings));
// we run the assignment twice, once without the license to ki... ummh peel bridges,
// and once with
for (Position current_run = 0; current_run < 2; ++current_run)
{
while (!unassigned_rings.empty())
{
// try to find a peelable fused ring
while (peelNextRing_(unassigned_rings, current_run == 1))
continue; // if it worked, try the next
// if we did not find another ring to peel, we have to exit
break;
}
}
// no ring should be left behind...
if (!unassigned_rings.empty())
{
Log.warn() << "Warning: RingAnalyser found an incomplete ring type assignment!" << std::endl;
}
// when we arrive here, the peeling order for this ring system contains global indices (into the rings_ vector)
// but our clients will want indices into the current ring system => convert them now
HashMap<Position, Position> global_to_local;
for (Position i = 0; i < current_system.size(); ++i)
{
global_to_local[current_system[i]] = i;
}
std::vector<Position>& current_peeling_order = peeling_order_.back();
for (Position i=0; i<current_peeling_order.size(); ++i)
{
current_peeling_order[i] = global_to_local[current_peeling_order[i]];
}
}
}
} // namespace BALL
|