1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/STRUCTURE/sdGenerator.h>
#include <BALL/STRUCTURE/ringAnalyser.h>
#include <BALL/MATHS/matrix44.h>
#include <BALL/KERNEL/system.h>
#include <BALL/KERNEL/standardPredicates.h>
#include <BALL/KERNEL/selector.h>
#include <BALL/KERNEL/bond.h>
#include <BALL/QSAR/ringPerceptionProcessor.h>
#include <BALL/KERNEL/forEach.h>
#include <BALL/KERNEL/PTE.h>
#include <algorithm>
//#define BALL_DEBUG_SDGENERATOR
#ifdef BALL_DEBUG_SDGENERATOR
# define DEBUG(a) Log.info() << a << std::endl;
#else
# define DEBUG(a)
#endif
namespace BALL
{
const char* SDGenerator::Option::SHOW_HYDROGENS = "sd_generator_show_hydrogens";
const char* SDGenerator::Option::STANDARD_BOND_LENGTH = "sd_generator_standard_bond_length";
const bool SDGenerator::Default::SHOW_HYDROGENS = true;
const float SDGenerator::Default::STANDARD_BOND_LENGTH = 2.0f;
SDGenerator::SDGenerator(bool show_hydrogens)
{
setDefaultOptions();
options[SDGenerator::Option::SHOW_HYDROGENS] = show_hydrogens;
}
SDGenerator::~SDGenerator()
{
}
void SDGenerator::prepare_()
{
// check if all hydrogen atoms should be deleted from the System
bool show_H = options.getBool(Option::SHOW_HYDROGENS);
if (!show_H)
{
std::list<Atom*> to_delete;
AtomIterator at_it;
BALL_FOREACH_ATOM(*system_, at_it)
{
if (at_it->getElement().getSymbol() == "H")
{
to_delete.push_back(&*at_it);
Atom* partner = at_it->getBond(0)->getPartner(*at_it);
if (partner->hasProperty("SDGenerator::NUM_REMOVED_HYDROGENS"))
{
int num_removed = partner->getProperty("SDGenerator::NUM_REMOVED_HYDROGENS").getInt();
partner->setProperty("SDGenerator::NUM_REMOVED_HYDROGENS", ++num_removed);
}
else
partner->setProperty("SDGenerator::NUM_REMOVED_HYDROGENS", 1);
}
}
for (std::list<Atom*>::iterator d_it = to_delete.begin(); d_it != to_delete.end(); ++d_it)
delete(*d_it);
DEBUG("all H's removed")
}
// compute the smallest set of smallest rings and analyze them
// NOTE: the RingAnalyser sets the "InRing" property for us
system_->apply(ring_analyser_);
// compute the Shelley priorities for each atom
computeShelleyPriorities_();
AtomIterator at_it;
// distinguish between ring-atoms and core-chain-atoms
BALL_FOREACH_ATOM(*system_, at_it)
{
// declare atoms as core-chain if they fulfil the following conditions:
// - acylic
// - have at least two neighbours, at least one of which is acyclic
// - have at least one acyclic beta atom on the other side of an acyclic neighbour (??? TODO!)
// - do not have an adjacent triple bond, or two adjacent double-bonds
//
// also, switch to equal angle distribution, if
// - all substituents are heteroatoms
// - three or more substituents are primary heteroatoms
// - atom has four or more substituents, and at least one double bond
// - two or more substituents have more than 6 beta atoms
if (!at_it->getProperty("InRing").getBool())
{
Size acyclic_neighbours = 0;
Size num_triple_bonds = 0;
Size num_double_bonds = 0;
//bool has_acyclic_beta = false;
bool only_hetero_substituents = true;
Size num_primary_hetero_substituents = 0;
Size num_congested_substituents = 0;
// - have at least two neighbours
if (at_it->countBonds() > 1)
{
Atom::BondIterator bond_it;
BALL_FOREACH_ATOM_BOND(*at_it, bond_it)
{
if (bond_it->getOrder() == Bond::ORDER__DOUBLE)
num_double_bonds++;
else if (bond_it->getOrder() == Bond::ORDER__TRIPLE)
num_triple_bonds++;
// - at least one of the neighbours must be acyclic
Atom* partner = bond_it->getPartner(*at_it);
if (!(partner->getProperty("InRing").getBool()))
{
++acyclic_neighbours;
}
const String& partner_element = partner->getElement().getSymbol();
if (partner_element == "H" || partner_element == "C")
only_hetero_substituents = false;
else if (partner->countBonds() == 1)
++num_primary_hetero_substituents;
if (partner->countBonds() >= 6)
++num_congested_substituents;
// - and have another acyclic neighbour
Atom::BondIterator next_bond_it;
BALL_FOREACH_ATOM_BOND(*partner, next_bond_it)
{
Atom* beta = next_bond_it->getPartner(*partner);
if (beta == &*at_it)
continue;
if (!beta->getProperty("InRing").getBool())
{
//has_acyclic_beta = true;
break;
}
}
}
// - check for all of the conditions and decide whether the atom might be core-chain or not
if ((acyclic_neighbours > 0) && (num_double_bonds < 2) && (num_triple_bonds == 0))// && has_acyclic_beta)
{
// later used in the chain analysis
if ( only_hetero_substituents
|| (num_primary_hetero_substituents >= 3)
|| ((at_it->countBonds() >= 4) && (num_double_bonds >= 1))
|| (num_congested_substituents >= 2))
{
at_it->setProperty(SDGenerator::EQAS);
}
else
{
at_it->setProperty(SDGenerator::CORE_CHAIN);
at_it->setProperty(SDGenerator::FXAS);
}
}
}
}
}
DEBUG("\t-*-[checkAtoms]:\tRing-atoms and core-chain-atoms found.")
}
void SDGenerator::clear()
{
ring_analyser_.clear();
chains_.clear();
// priority_queue has no clear() function...
if (!redraw_queue_.empty())
{
Size to_pop = redraw_queue_.size();
for (Position i=0; i<to_pop; ++i)
redraw_queue_.pop();
}
// now remove all properties we put in (apart from InRing - this one which
// might come in handy later...)
AtomIterator at_it;
BALL_FOREACH_ATOM(*system_, at_it)
{
for (Position i=FIRST_SDGENERATOR_PROPERTY; i<=LAST_SDGENERATOR_PROPERTY; ++i)
{
if (at_it->hasProperty(i))
at_it->clearProperty(i);
}
// also, we had some named properties we need to erase
String properties[9] = {"SDGenerator::NUM_REMOVED_HYDROGENS",
"SDGenerator::PRIORITY",
"SDGenerator::CFS_high",
"SDGenerator::CFS_low",
"SDGenerator::CFS_old_high",
"SDGenerator::CFS_old_low",
"SDGenerator::AngularDemand",
"SDGenerator::PFU_x_pos",
"SDGenerator::PFU_y_pos"};
for (Position i=0; i<9; ++i)
{
if (at_it->hasProperty(properties[i]))
at_it->clearProperty(properties[i]);
}
}
}
void SDGenerator::generateSD(System& molecule_sys)
{
// store the system
system_ = &molecule_sys;
// make sure that there is no old crap lying around
clear();
// distinguish between core-chain-atoms, ring-atoms, and others
prepare_();
for (Size i = 0; i < ring_analyser_.getNumberOfRingSystems(); i++)
{
// construct each ringsystem in the suitable way
constructRingSystem_(i);
}
treatChains_();
// assemble the Structure Diagram from the prepared Fragments
assembleSD_();
// put the hydrogens back
std::list<Atom*> to_add;
AtomIterator at_it;
BALL_FOREACH_ATOM(*system_, at_it)
{
if (at_it->hasProperty("SDGenerator::NUM_REMOVED_HYDROGENS"))
{
to_add.push_back(&*at_it);
}
}
for (std::list<Atom*>::iterator at_it = to_add.begin(); at_it != to_add.end(); ++at_it)
{
// add them back
int num_hydrogens = (*at_it)->getProperty("SDGenerator::NUM_REMOVED_HYDROGENS").getInt();
Angle cfs_low = getCFS_(*at_it, false);
Angle cfs_high = getCFS_(*at_it, true);
Angle demand = cfs_high - cfs_low;
demand.normalize(Angle::RANGE__UNSIGNED);
if (demand.toRadian() == 0)
demand.set((float)(2*Constants::PI));
float new_beta = demand.toRadian() / (num_hydrogens+1);
for (int i=0; i<num_hydrogens; ++i)
{
Atom *new_hydrogen = new Atom(PTE["H"], "H");
Vector3 new_position = (*at_it)->getPosition();
new_position.x += cos(cfs_low.toRadian() + (i+1)*new_beta);
new_position.y += sin(cfs_low.toRadian() + (i+1)*new_beta);
new_hydrogen->setPosition(new_position);
(*at_it)->getMolecule()->insert(*new_hydrogen);
new_hydrogen->createBond(**at_it)->setOrder(Bond::ORDER__SINGLE);
}
}
// be nice and clean up old stuff
clear();
DEBUG("Structure Diagram has been generated.")
}
void SDGenerator::computeShelleyPriorities_()
{
// compute the Shelley score for each atom, which is defined as follows:
//
// S_a,0 = 1 + 2 \delta (\delta = 1 if a cyclic; 0 otherwise)
// S_a,n = 3S_a,n-1 + \sum_j S_j,n-1
//
// In the original formulation, the algorithm iterates until no new score
// classes are created. Here, we just use the heuristics given by Helson to
// iterate 5 times in practice.
//
std::map<Atom*, int> last_scores, new_scores;
AtomIterator at_it;
BALL_FOREACH_ATOM(*system_, at_it)
{
last_scores[&*at_it] = (at_it->getProperty("InRing").getBool()) ? 2 : 0;
}
for (Position i=0; i<5; ++i)
{
BALL_FOREACH_ATOM(*system_, at_it)
{
int& current_score = new_scores[&*at_it];
current_score = 3*last_scores[&*at_it];
Atom::BondIterator b_it;
BALL_FOREACH_ATOM_BOND(*at_it, b_it)
{
current_score += last_scores[b_it->getPartner(*at_it)];
}
}
std::swap(last_scores, new_scores);
}
// save the values as properties in the atoms
// NOTE: we always swap new_scores and last_scores in the loop,
// so after the algorithm terminates, last_scores contains
// the final values... alright, alright, don't shout....
BALL_FOREACH_ATOM(*system_, at_it)
{
at_it->setProperty("SDGenerator::PRIORITY", last_scores[&*at_it]);
}
}
void SDGenerator::buildRegularPolygon_(RingAnalyser::Ring& ring, Position first_anchor_index, bool clockwise)
{
Position second_anchor_index = (first_anchor_index + 1) % ring.atoms.size();
Vector3& anchor_start = ring.atoms[first_anchor_index]->getPosition();
Vector3& anchor_end = ring.atoms[second_anchor_index]->getPosition();
Vector3 anchor = anchor_end - anchor_start;
float phi = (float) (2.*Constants::PI / ring.atoms.size());
float l = anchor.getLength();
float r = (float) (l/(2.*sin(phi/2.)));
float h = (float) (l/(2.*tan(phi/2.)));
Vector3 orth_anchor(anchor.y, -anchor.x, 0);
orth_anchor.normalize();
if (!clockwise)
{
orth_anchor *= -1.f;
phi *= -1.;
}
Vector3 center = anchor_start + anchor*0.5 + orth_anchor*h;
Vector3 center_to_start = anchor_start - center;
float phi_0 = (float)(((center_to_start.x > 0) ? +1. : -1.) * acos(std::max(std::min(center_to_start.y/r, 1.f), -1.f)));
Position current_atom_index = (second_anchor_index + 1) % ring.atoms.size();
for (Position i=2; i<ring.atoms.size(); ++i)
{
Vector3 new_position = center + Vector3((float) (r*sin(phi_0 + i*phi)), (float) (r*cos(phi_0 + i*phi)), 0);
ring.atoms[current_atom_index]->setPosition(new_position);
ring.atoms[current_atom_index]->setProperty(SDGenerator::DEPOSITED);
current_atom_index = (current_atom_index + 1) % ring.atoms.size();
}
}
void SDGenerator::buildOpenPolygon_(RingAnalyser::Ring& ring, Position first_anchor_index, Position second_anchor_index)
{
const size_t N = ring.atoms.size();
double alpha = 2 * Constants::PI / N;
double bond_length = options.getReal(Option::STANDARD_BOND_LENGTH);
double l = (bond_length / 2) / cos(alpha / 2.);
Vector3 d_vect = ring.atoms[second_anchor_index]->getPosition()
- ring.atoms[first_anchor_index]->getPosition();
const double D = d_vect.getLength();
double hh = l*l - D*D/4.;
while (hh < 0)
{
bond_length *= 1.2;
l = (bond_length / 2) / cos((alpha) / 2.);
hh = l*l - D*D/4.;
}
const double h = sqrt(hh);
Vector3 d_ortho(d_vect.y, -d_vect.x, 0);
// find out in which direction we should attach the new ring
// (it should be the direction pointing away from the center of
// gravity of all previously deposited atoms)
int pos = 1;
Vector3 cog_deposited;
for (Position i = first_anchor_index % N; i != (second_anchor_index + 1) % N; i = (i + 1) % N, ++pos)
{
cog_deposited += ring.atoms[i]->getPosition();
}
cog_deposited /= pos;
Vector3 mid_anchor = ring.atoms[first_anchor_index]->getPosition() + d_vect/2;
if ((cog_deposited - mid_anchor) * d_ortho > 0)
{
d_ortho *= -1.0;
alpha *= -1.0;
}
Vector3 center = ring.atoms[first_anchor_index]->getPosition() + d_vect/2 + d_ortho*(h/D);
Vector3 center_to_start = ring.atoms[second_anchor_index]->getPosition() - center;
float phi_0 = (float) (((center_to_start.x > 0) ? +1. : -1.) * acos(std::min(center_to_start.y/l, 1.)));
pos = 1;
for (int i = (second_anchor_index + 1) % N; i != (int)first_anchor_index; i = (i + 1) % N, ++pos)
{
Vector3 new_position((float) (center.x + l*sin(phi_0 + pos*alpha)), (float)(center.y + l*cos(phi_0 +pos*alpha)), 0);
ring.atoms[i]->setPosition(new_position);
ring.atoms[i]->setProperty(SDGenerator::DEPOSITED);
}
}
void SDGenerator::constructRingSystem_(Position current_ring_system_index)
{
std::vector<RingAnalyser::Ring> current_system = ring_analyser_.getRingSystem(current_ring_system_index);
std::vector<Position> peeling_order = ring_analyser_.getPeelingOrder(current_ring_system_index);
// undo the peeling backwards
for (std::vector<Position>::reverse_iterator ring_it = peeling_order.rbegin(); ring_it != peeling_order.rend(); ++ring_it)
{
RingAnalyser::Ring& current_ring = current_system[*ring_it];
switch (current_ring.type)
{
case RingAnalyser::CORE:
DEBUG("Attaching Core");
attachCore_(*ring_it, current_system, (float)current_ring_system_index);
break;
case RingAnalyser::TEMPLATE:
DEBUG("Attaching Template");
attachTemplate_(*ring_it, current_system);
break;
case RingAnalyser::SPIRO:
DEBUG("Attaching Spiro");
attachSpiro_(*ring_it, current_system);
break;
case RingAnalyser::FUSED:
DEBUG("Attaching Fused");
attachFused_(*ring_it, current_system);
break;
case RingAnalyser::BRIDGED:
DEBUG("Attaching Bridged");
attachBridged_(*ring_it, current_system);
break;
default:
Log.error() << "SDGenerator::constructRingSystem_(): Cannot attach unknown ring type!" << std::endl;
break;
}
}
// finally, compute the angular demands of each atom
for (Position i=0; i<current_system.size(); ++i)
{
RingAnalyser::Ring& current_ring = current_system[i];
for (Position j=0; j<current_ring.atoms.size(); ++j)
{
computeAngularDemand_(current_ring.atoms[j]);
}
}
}
Angle SDGenerator::getCFS_(Atom const* atom, bool high)
{
Angle result(atom->getProperty(high ? "SDGenerator::CFS_high" : "SDGenerator::CFS_low").getFloat(), true);
return result;
}
Angle SDGenerator::computeCFS_(Vector3 const& input)
{
float alpha = (float) atan2(input.y, input.x);
if (alpha < 0.)
{
alpha += 2 * Constants::PI;
}
return Angle(alpha, true);
}
void SDGenerator::setCFS_(Atom* atom, Angle cfs, bool high)
{
cfs.normalize(Angle::RANGE__UNSIGNED);
atom->setProperty(high ? "SDGenerator::CFS_high" : "SDGenerator::CFS_low", cfs.toRadian());
}
void SDGenerator::pushCFS_(Atom* atom)
{
if (atom->hasProperty("SDGenerator::CFS_high") && atom->hasProperty("SDGenerator::CFS_low"))
{
atom->setProperty("SDGenerator::CFS_old_high", getCFS_(atom, true).toRadian());
atom->setProperty("SDGenerator::CFS_old_low", getCFS_(atom, false).toRadian());
}
}
Angle SDGenerator::getBackupCFS_(Atom const* atom, bool high)
{
Angle result(atom->getProperty(high ? "SDGenerator::CFS_old_high" : "SDGenerator::CFS_old_low").getFloat(), true);
return result;
}
Angle SDGenerator::computeAngularDemand_(Atom* seed)
{
// do we already know the angular demand?
if (seed->hasProperty("SDGenerator::AngularDemand"))
{
return (Angle(seed->getProperty("SDGenerator::AngularDemand").getFloat(), true));
}
// the angular demand is the angle covered by the PFU, so the opposite angle of the CFS
Angle CFS_hi = getCFS_(seed, true);
Angle CFS_lo = getCFS_(seed, false);
Angle demand = CFS_lo - CFS_hi;
demand.normalize(Angle::RANGE__UNSIGNED);
seed->setProperty("SDGenerator::AngularDemand", demand.toRadian());
return demand;
}
void SDGenerator::computeCoreCFS_(RingAnalyser::Ring& ring, bool clockwise)
{
// store the initial CFS values
for (Position i=0; i<ring.atoms.size(); ++i)
{
Atom* center_atom = ring.atoms[i];
Vector3& center = center_atom->getPosition();
Vector3 low = ring.atoms[ring.successor(i) ]->getPosition() - center;
Vector3 high = ring.atoms[ring.predecessor(i)]->getPosition() - center;
Angle cfs_low = computeCFS_(low);
Angle cfs_high = computeCFS_(high);
if (!clockwise)
std::swap(cfs_low, cfs_high);
setCFS_(center_atom, cfs_high, true);
setCFS_(center_atom, cfs_low, false);
}
}
void SDGenerator::attachCore_(Size core_index, std::vector<RingAnalyser::Ring>& current_system, float x_start)
{
std::vector<Atom*>& ring = current_system[core_index].atoms;
// set the standard bond-length
float bond_length = (float) options.getReal(Option::STANDARD_BOND_LENGTH);
// prepare the first two atom positions
if (ring.size() % 2)
{
// odd numbered ring
ring[0]->setPosition(Vector3(0.f, x_start, 0.f));
ring[1]->setPosition(Vector3(bond_length, x_start, 0.f));
}
else
{
// even numbered ring
ring[0]->setPosition(Vector3(x_start, 0.f, 0.f));
ring[1]->setPosition(Vector3(x_start, bond_length, 0.f));
}
ring[0]->setProperty(SDGenerator::DEPOSITED);
ring[1]->setProperty(SDGenerator::DEPOSITED);
buildRegularPolygon_(current_system[core_index], 0, true);
current_system[core_index].setProperty(SDGenerator::DEPOSITED);
computeCoreCFS_(current_system[core_index], true);
DEBUG("\t-*-[RSConstructor]:\t (attachCore_):\t done.")
}
// interface for a Ring Template Database
// if a RTD will be installed, this interface can be used to get information from it
void SDGenerator::attachTemplate_(Position /* current_ring */, std::vector<RingAnalyser::Ring>& /*current_system*/)
{
DEBUG("\t-*-[RSConstructor]:\t (attachTemplate):\t started.")
}
// attach a fused-ring to a (partially) prefabricated ringsystem
void SDGenerator::attachFused_(Position current_ring_index, std::vector<RingAnalyser::Ring>& current_system)
{
DEBUG("\t-*-[RSConstructor]:\t (attachFused_):\t\t started.")
// the fused ring that is to be attached
std::vector<Atom*>& ring = current_system[current_ring_index].atoms;
// the bonds this ring shares with other rings
std::set<Bond const*>& shared_bonds = current_system[current_ring_index].shared_bonds;
// find the two atoms that are shared by the ring that is to be
// constructed with another ring of the ring system that has already
// been deposited
// compute all ring memberships
HashMap<Atom const*, std::set<Position> > rings_per_atom;
for (Position i=0; i<current_system.size(); ++i)
{
for (Position j=0; j<current_system[i].atoms.size(); ++j)
{
rings_per_atom[current_system[i].atoms[j]].insert(i);
}
}
Bond const* shared_bond = NULL;
Atom const* first_atom = NULL;
Atom const* second_atom = NULL;
Position neighbouring_ring;
for (std::set<Bond const*>::iterator bond_it = shared_bonds.begin();
bond_it != shared_bonds.end(); ++bond_it)
{
first_atom = (*bond_it)->getFirstAtom();
second_atom = (*bond_it)->getSecondAtom();
std::set<Position>& first_rings = rings_per_atom[first_atom];
std::set<Position>& second_rings = rings_per_atom[second_atom];
std::set<Position> intersection;
std::set_intersection(first_rings.begin(), first_rings.end(),
second_rings.begin(), second_rings.end(),
std::inserter(intersection, intersection.begin()));
for (std::set<Position>::iterator int_it = intersection.begin(); int_it != intersection.end(); ++int_it)
{
if (current_system[*int_it].hasProperty(SDGenerator::DEPOSITED))
{
shared_bond = *bond_it;
neighbouring_ring = *int_it;
break;
}
}
if (shared_bond)
break;
}
// if we have found a suitable bond...
if (shared_bond)
{
// now we need to know if both rings are sequenced such that they see the bond in the same
// direction, i.e. that the first atom of the bond preceeds the second one in both rings, or
// vice versa
// find the bond in the old ring that will be taken for the correct direction of the bonds
// in the new ring, i.e. the bond between the second shared atom and the next atom in the old ring
Position first_atom_index=0, second_atom_index=0;
for (Position i=0; i<ring.size(); ++i)
{
if (ring[i] == first_atom)
first_atom_index = i;
if (ring[i] == second_atom)
second_atom_index = i;
}
Index index_diff = second_atom_index - first_atom_index;
bool forward;
if (abs(index_diff) == 1)
{
forward = (index_diff > 0);
}
else
{
forward = (second_atom_index == 0);
}
if (!forward)
{
std::swap(first_atom_index, second_atom_index);
}
std::vector<Atom*>& ref_ring = current_system[neighbouring_ring].atoms;
// compute the center of the deposited neighbor
Position num_depos_atoms = 1;
Vector3 deposited_cog;
for (Position i=0; i<ref_ring.size(); ++i, ++num_depos_atoms)
{
if (ref_ring[i]->hasProperty(SDGenerator::DEPOSITED))
deposited_cog += ref_ring[i]->getPosition();
}
deposited_cog /= num_depos_atoms;
Vector3 anchor = ring[second_atom_index]->getPosition() - ring[first_atom_index ]->getPosition();
Vector3 orth_anchor(anchor.y, -anchor.x, 0);
Vector3 center = ring[first_atom_index]->getPosition() + anchor*0.5;
bool clockwise = true;
if ((deposited_cog - center) * orth_anchor > 0)
clockwise = false;
buildRegularPolygon_(current_system[current_ring_index], first_atom_index, clockwise);
// store the old CFS of the shared atoms
Angle old_CFS_lo_first = getCFS_(ring[first_atom_index], false);
Angle old_CFS_hi_first = getCFS_(ring[first_atom_index], true);
Angle old_CFS_lo_second = getCFS_(ring[second_atom_index], false);
Angle old_CFS_hi_second = getCFS_(ring[second_atom_index], true);
computeCoreCFS_(current_system[current_ring_index], clockwise);
// and retrieve the new CFS values
Angle new_CFS_lo_first = getCFS_(ring[first_atom_index], false);
Angle new_CFS_hi_first = getCFS_(ring[first_atom_index], true);
Angle new_CFS_lo_second = getCFS_(ring[second_atom_index], false);
Angle new_CFS_hi_second = getCFS_(ring[second_atom_index], true);
Angle anchor_cfs = computeCFS_(anchor);
// test which of the vectors are collinear with the bond we attach to
if (fabs((old_CFS_hi_first - anchor_cfs).toRadian()) < 1e-3)
{
// in this case, we take the low vector from the first and the high from the second ring
// for the first atom, and for the second atom vice versa
setCFS_(ring[first_atom_index], old_CFS_lo_first, false);
setCFS_(ring[first_atom_index], new_CFS_hi_first, true);
setCFS_(ring[second_atom_index], new_CFS_lo_first, false);
setCFS_(ring[second_atom_index], old_CFS_hi_first, true);
}
else
{
// in this case, we take the high vector from the first and the low from the second ring
// for the first atom, and for the second atom vice versa
setCFS_(ring[first_atom_index], new_CFS_lo_first, false);
setCFS_(ring[first_atom_index], old_CFS_hi_first, true);
setCFS_(ring[second_atom_index], old_CFS_lo_first, false);
setCFS_(ring[second_atom_index], new_CFS_hi_first, true);
}
// and determine, which of these is the new high and which the new low
current_system[current_ring_index].setProperty(SDGenerator::DEPOSITED);
DEBUG("\t-*-[SDGenerator]:\t (attachFused):\t done.")
}
// if not both of the shared atoms have been found, append the cuurent ring at the end of the ringsystem and construct it later
else
{
// TODO: do i have to append it again?
DEBUG("\t-*-[SDGenerator]:\t (attachFused):\t aborted. Ring appended.")
}
}
// attach a bridged ring to a (partially) prefabricated ringsystem
void SDGenerator::attachSpiro_(Position current_ring_index, std::vector<RingAnalyser::Ring>& current_system)
{
// for now, we do something extremely simple: construct a core-ring and translate it
// to the correct position.
// TODO: take care of the overlaps this procedure *will* produce!
RingAnalyser::Ring& current_ring = current_system[current_ring_index];
Position i;
for (i=0; i<current_ring.atoms.size(); ++i)
{
if (current_ring.atoms[i]->hasProperty(SDGenerator::DEPOSITED))
break;
}
if (i == current_ring.atoms.size())
{
Log.error() << "SDGenerator::attachSpiro_(): Can only attach rings with one deposited atom!" << std::endl;
return;
}
Vector3 correct_position = current_ring.atoms[i]->getPosition();
attachCore_(current_ring_index, current_system, 0);
Vector3 translation = correct_position - current_ring.atoms[i]->getPosition();
for (Position i=0; i<current_ring.atoms.size(); ++i)
{
current_ring.atoms[i]->setPosition(current_ring.atoms[i]->getPosition() + translation);
}
// TODO: update the CFS correctly!
current_ring.setProperty(SDGenerator::DEPOSITED);
}
// attach a bridged ring to a (partially) prefabricated ringsystem
void SDGenerator::attachBridged_(Position current_ring_index, std::vector<RingAnalyser::Ring>& current_system)
{
// construct a BRIDGED ring by the open polygon - method
DEBUG("\t-*-[SDGenerator]:\t (attachBridged):\t started.")
if(current_system[current_ring_index].hasProperty(SDGenerator::DEPOSITED))
{
return;
}
RingAnalyser::Ring& ring = current_system[current_ring_index];
std::vector<Atom*>& atoms = ring.atoms;
//Make sure the ring contains at least two deposited atoms
Position counter = 0;
for(Position j = 0; j < atoms.size(); ++j)
{
if(atoms[j]->hasProperty(SDGenerator::DEPOSITED))
{
++counter;
}
}
if(counter < 2)
{
// This is clearly not a bridged ring or the peeling went wrong
Log.error() << "SDGenerator::attachBridged_(): Can't attach ring with only one placed atom!" << std::endl;
return;
}
else if (counter == atoms.size())
{
ring.setProperty(SDGenerator::DEPOSITED);
//Ring is already deposited and we should bail out
return;
}
// ok, let's find the first bridge head
Position first_anchor_point = 0;
Position second_anchor_point = 0;
for (Position i=0; i<atoms.size(); ++i)
{
bool last_deposited = atoms[ring.predecessor(i)]->hasProperty(SDGenerator::DEPOSITED);
bool is_deposited = atoms[i]->hasProperty(SDGenerator::DEPOSITED);
bool next_deposited = atoms[ring.successor(i)]->hasProperty(SDGenerator::DEPOSITED);
if (is_deposited && !last_deposited)
{
first_anchor_point = i;
}
if (is_deposited && !next_deposited)
{
second_anchor_point = i;
}
}
// if both bridge heads are next to each other, we can treat this like a fused ring
if (counter == 2)
{
attachFused_(current_ring_index, current_system);
return;
}
else
{
buildOpenPolygon_(ring, first_anchor_point, second_anchor_point);
}
// store the old CFS values at the anchor
Angle first_CFS_old_low = getCFS_(atoms[first_anchor_point], false);
Angle first_CFS_old_high = getCFS_(atoms[first_anchor_point], true);
Angle second_CFS_old_low = getCFS_(atoms[second_anchor_point], false);
Angle second_CFS_old_high = getCFS_(atoms[second_anchor_point], true);
// now, update the circular free sweep
computeCoreCFS_(ring, ringIsClockwise_(ring, second_anchor_point));
// and get the new CFS values at the anchor
Angle first_CFS_new_low = getCFS_(atoms[first_anchor_point], false);
Angle first_CFS_new_high = getCFS_(atoms[first_anchor_point], true);
Angle second_CFS_new_low = getCFS_(atoms[second_anchor_point], false);
Angle second_CFS_new_high = getCFS_(atoms[second_anchor_point], true);
// the correct CFS values are the intersection of the old ones
// TODO: this is most probably incorrect...
setCFS_(atoms[first_anchor_point], std::min(first_CFS_old_low, first_CFS_new_low), false);
setCFS_(atoms[first_anchor_point], std::max(first_CFS_old_high, first_CFS_new_high), true);
setCFS_(atoms[second_anchor_point], std::min(second_CFS_old_low, second_CFS_new_low), false);
setCFS_(atoms[second_anchor_point], std::max(second_CFS_old_high, second_CFS_new_high), true);
ring.setProperty(SDGenerator::DEPOSITED);
}
void SDGenerator::computeAdjacencyMatrix_(std::vector<Atom*>& chain, std::vector<bool>& result)
{
Size nodes = chain.size();
// yes, this matrix should be symmetric, really, or even sparse. but even for large
// chains, this does not really matter
result.resize(nodes*nodes, false);
for (Position i=0; i<nodes; ++i)
{
for (Position j=0; j<nodes; ++j)
{
// the diagonal should be set to true also (for the later stages)
if ((i == j) || (chain[i]->isBoundTo(*(chain[j]))))
result[i+j*nodes] = true;
}
}
}
bool SDGenerator::compareChains_(const vector<Atom*>& x, const vector<Atom*>& y)
{
return x.size() > y.size();
}
void SDGenerator::findFloydWarshallPath_(std::vector<int>& path, std::vector<Index>& next, Size remaining_atoms,
Position i, Position j, std::list<Index>& output)
{
if (path[i+j*remaining_atoms] == std::numeric_limits<int>::max())
{
return;
}
Index intermediate = next[i+j*remaining_atoms];
if (intermediate == -1)
{
return;
}
else
{
findFloydWarshallPath_(path, next, remaining_atoms, i, intermediate, output);
output.push_back(intermediate);
findFloydWarshallPath_(path, next, remaining_atoms, intermediate, j, output);
}
}
void SDGenerator::treatChains_()
{
// A chain is defined as the longest continuous path between core chain atoms,
// plus two capping (arbitrarily chosen) substituents not on the path.
//
// To determine the paths, we use a Floyd-Warshall algorithm with unit positive
// edge weights. Since all core chain atoms are by definition acyclic, the graph
// connecting them will be acyclic also, so we can use the longest shortest path
// between arbitrary nodes as the longest path in the graph.
//
// We can have multiple chains in our molecule, possibly connected, so after
// each run of the algorithm we delete all atoms on the current path from the input
// and iterate.
//
std::list<Atom*> core_chain_atoms;
// initialize the core chain atoms with all candidates
AtomIterator at_it;
BALL_FOREACH_ATOM(*system_, at_it)
{
if (at_it->hasProperty(SDGenerator::CORE_CHAIN))
{
core_chain_atoms.push_back(&*at_it);
}
}
// and iterate the Floyd-Warshall algorithm
Size remaining_atoms = core_chain_atoms.size();
while (remaining_atoms > 0)
{
// working with indices in the backtracking is more convenient
std::vector<std::list<Atom*>::iterator> index_to_atom_list(remaining_atoms);
std::list<Atom*>::iterator l_it=core_chain_atoms.begin();
for (Position i=0; i<remaining_atoms; ++i, ++l_it)
{
index_to_atom_list[i] = l_it;
}
// initialize the path matrix
std::vector<int> path(remaining_atoms*remaining_atoms, std::numeric_limits<int>::max());
// and the backtracking matrix
std::vector<Index> next(remaining_atoms*remaining_atoms, -1);
// initialize the dp matrix
for (Position i=0; i<remaining_atoms; ++i)
{
Atom* first_atom = *index_to_atom_list[i];
path[i+i*remaining_atoms] = 0;
for (Position j=i+1; j<remaining_atoms; ++j)
{
Atom* second_atom = *index_to_atom_list[j];
if (first_atom->isBoundTo(*second_atom))
{
path[i+j*remaining_atoms] = 1;
path[j+i*remaining_atoms] = 1;
}
}
}
// fill the dp matrix
for (Position k=0; k<remaining_atoms; ++k)
{
for (Position i=0; i<remaining_atoms; ++i)
{
int& p_ik = path[i+k*remaining_atoms];
if (p_ik == std::numeric_limits<int>::max())
continue;
for (Position j=0; j<remaining_atoms; ++j)
{
int& p_kj = path[k+j*remaining_atoms];
int& p_ij = path[i+j*remaining_atoms];
if (p_kj == std::numeric_limits<int>::max())
continue;
if (p_ik + p_kj < p_ij)
{
p_ij = p_ik + p_kj;
next[i+j*remaining_atoms] = k;
}
}
}
}
// find the path of maximal minimum length
int max_value = std::numeric_limits<int>::min();
Position max_i = 0, max_j = 0;
for (Position i=0; i<remaining_atoms; ++i)
{
for (Position j=0; j<remaining_atoms; ++j)
{
int current_value = path[i+j*remaining_atoms];
if ((current_value != std::numeric_limits<int>::max()) && (current_value > max_value ))
{
max_value = path[i+j*remaining_atoms];
max_i = i;
max_j = j;
}
}
}
// and do the backtracking for the path from max_i to max_j.
chains_.push_back(std::list<Atom*>());
std::list<Index> longest_path;
longest_path.push_back(max_i);
findFloydWarshallPath_(path, next, remaining_atoms, max_i, max_j, longest_path);
if (max_i != max_j)
longest_path.push_back(max_j);
// finally, remove all found atoms from the input
for (std::list<Index>::iterator l_it = longest_path.begin(); l_it != longest_path.end(); ++l_it)
{
chains_.back().push_back(*(index_to_atom_list[*l_it]));
core_chain_atoms.erase(index_to_atom_list[*l_it]);
}
// and add one capping substituent to the beggining of the chain
Atom::BondIterator b_it;
Atom* first_atom = *(chains_.back().begin());
Atom* second_atom = (chains_.back().size() > 1) ? *(++chains_.back().begin()) : first_atom;
BALL_FOREACH_ATOM_BOND(*first_atom, b_it)
{
if (b_it->getPartner(*first_atom) != second_atom)
{
chains_.back().push_front(b_it->getPartner(*first_atom));
break;
}
}
// and to the end
first_atom = chains_.back().back();
second_atom = *(--(--chains_.back().end()));
BALL_FOREACH_ATOM_BOND(*first_atom, b_it)
{
if (b_it->getPartner(*first_atom) != second_atom)
{
chains_.back().push_back(b_it->getPartner(*first_atom));
break;
}
}
remaining_atoms = core_chain_atoms.size();
}
}
Angle SDGenerator::computeAngularSeparation_(Atom* seed)
{
Angle demand = computeAngularDemand_(seed);
Size num_sub = 0;
HashSet<Bond*> unplaced_PFU_bonds;
bool seed_in_ring = seed->getProperty("InRing").getBool();
Atom::BondIterator b_it;
BALL_FOREACH_ATOM_BOND(*seed, b_it)
{
Atom* partner = b_it->getPartner(*seed);
if (!partner->hasProperty(SDGenerator::ASSEMBLED))
{
Bond* b = &*b_it;
// does this bond belong to a previously placed PFU?
if (unplaced_PFU_bonds.find(b) != unplaced_PFU_bonds.end())
continue;
// is this bond part of a PFU at all?
if (seed_in_ring && partner->getProperty("InRing").getBool())
{
// find the ring system this bond belongs to
Position ring_system_index;
for (ring_system_index=0; ring_system_index<ring_analyser_.getNumberOfRingSystems(); ++ring_system_index)
{
if ( ring_analyser_.isInRingSystem(seed, ring_system_index)
&& ring_analyser_.isInRingSystem(partner, ring_system_index))
{
break;
}
}
// place all its bonds into the list
std::vector<RingAnalyser::Ring> ring_system = ring_analyser_.getRingSystem(ring_system_index);
for (Position current_ring_index = 0; current_ring_index < ring_system.size(); ++current_ring_index)
{
RingAnalyser::Ring const& current_ring = ring_system[current_ring_index];
for (Position atom=0; atom < current_ring.atoms.size(); ++atom)
{
Bond* b = current_ring.atoms[atom]->getBond(*(current_ring.atoms[current_ring.successor(atom)]));
unplaced_PFU_bonds.insert(b);
}
}
}
else
{
++num_sub;
}
}
}
if (seed->hasProperty(SDGenerator::HEAD))
--num_sub;
if (seed->hasProperty(SDGenerator::FXAS))
{
--num_sub;
demand += Angle((float) (2./3 * Constants::PI));
}
Angle free_CFS((float) (2*Constants::PI - demand.toRadian()), true);
free_CFS.normalize(Angle::RANGE__UNSIGNED);
if (fabs(free_CFS.toRadian()) < 1e-4)
free_CFS.set((float) (2*Constants::PI), true);
return Angle((free_CFS.toRadian())/(num_sub + 1));
}
std::vector<Atom*> SDGenerator::sequenceSubstituents_(Atom* seed)
{
std::vector<Atom*> result;
// if this atom is a chain atom, find all its chains
bool in_chain = seed->hasProperty(SDGenerator::CORE_CHAIN);
std::list<Atom*> seed_chain;
bool found = false;
if (in_chain)
{
for (std::list<std::list<Atom*> >::iterator chains_it = chains_.begin();
chains_it != chains_.end() && !found; ++chains_it)
{
for (std::list<Atom*>::iterator chain_it = chains_it->begin(); chain_it != chains_it->end(); ++chain_it)
{
if (*chain_it == seed)
{
seed_chain = *chains_it;
found = true;
break;
}
}
}
}
// we need the set of substituents to treat, and already treated ones
std::list<Atom*> left, done;
Atom::BondIterator b_it;
BALL_FOREACH_ATOM_BOND(*seed, b_it)
{
Atom* partner = b_it->getPartner(*seed);
if (partner->hasProperty(SDGenerator::ASSEMBLED))
done.push_back(partner);
else
left.push_back(partner);
}
Atom* last_substituent = NULL;
while (!left.empty())
{
Atom* next_substituent = NULL;
// if the seed atom is in a chain...
if (in_chain)
{
// if the last atom was the CW chain neighbour and the CCW belongs to left...
if ( last_substituent
&& last_substituent->hasProperty(SDGenerator::CORE_CHAIN))
{
bool found_cw = false;
for (std::list<Atom*>::iterator at_it = seed_chain.begin(); at_it != seed_chain.end(); ++at_it)
{
if (*at_it == last_substituent)
{
found_cw = true;
break;
}
}
if (found_cw)
{
// ok. now try to find the CCW neighbour in left
bool found_ccw = false;
std::list<Atom*>::iterator n_it;
for (n_it = left.begin(); n_it != left.end() && !found_ccw; ++n_it)
{
if ((*n_it)->hasProperty(SDGenerator::CORE_CHAIN))
{
for (std::list<Atom*>::iterator c_it = seed_chain.begin(); c_it != seed_chain.end(); ++c_it)
{
if (*c_it == *n_it)
{
found_ccw = true;
next_substituent = *n_it;
break;
}
}
}
}
}
}
// otherwise, if done is empty, use the CW chain neigbour.
if (!next_substituent && done.empty())
{
// use one of the neighbours in one of the chains
for (std::list<Atom*>::iterator n_it = seed_chain.begin(); n_it != seed_chain.end(); ++n_it)
{
if (*n_it == seed)
{
if (n_it == seed_chain.begin())
{
next_substituent = seed_chain.back();
}
else
{
next_substituent = *(--n_it);
}
break;
}
}
}
}
if (!next_substituent)
{
// otherwise, set s to the highest priority atom of left
int max_value = std::numeric_limits<int>::min();
for (std::list<Atom*>::iterator a_it = left.begin(); a_it != left.end(); ++a_it)
{
if ((*a_it)->getProperty("SDGenerator::PRIORITY").getInt() > max_value)
{
next_substituent = *a_it;
max_value = (*a_it)->getProperty("SDGenerator::PRIORITY").getInt();
}
}
}
// ensure that s is not from the wrong side of a PFU
if (seed->getProperty("InRing").getBool() && next_substituent->getProperty("InRing").getBool())
{
// get the atom's current CFS_hi
Angle seed_CFS_hi = getCFS_(seed, true);
Position i;
// find the PFU (the ring system) containing the bond
for (i=0; i<ring_analyser_.getNumberOfRingSystems(); ++i)
{
if (ring_analyser_.isInRingSystem(seed, i))
{
// every atom can only be a member of one ring system
break;
}
}
// this should not happen if noone screwed up the properties from the outside
if (i >= ring_analyser_.getNumberOfRingSystems())
{
Log.error() << "SDGenerator::sequenceSubstituents_(): invalid ring system found!" << std::endl;
}
else
{
// find the bond in the PFU adjacent to seed_atom that equals seed_atom's CFS_hi
// (this has to exist)
Atom::BondIterator b_it;
BALL_FOREACH_ATOM_BOND(*seed, b_it)
{
Atom* partner = b_it->getPartner(*seed);
if (ring_analyser_.isInRingSystem(partner, i))
{
Vector3 bond = partner->getPosition() - seed->getPosition();
Angle bond_CFS = computeCFS_(bond);
if (fabs(bond_CFS - seed_CFS_hi) < 1e-3)
{
next_substituent = partner;
break;
}
}
}
// remove all pfu atoms from left and put them into done
std::vector<RingAnalyser::Ring> pfu = ring_analyser_.getRingSystem(i);
for (Position j=0; j<pfu.size(); ++j)
{
std::vector<Atom*> ring = pfu[j].atoms;
for (Position k=0; k<ring.size(); ++k)
{
std::list<Atom*>::iterator to_delete = std::find(left.begin(), left.end(), ring[k]);
if (to_delete != left.end())
{
done.push_back(*to_delete);
left.erase(to_delete);
}
}
}
}
}
result.push_back(next_substituent);
done.push_back(next_substituent);
left.remove(next_substituent);
last_substituent = next_substituent;
}
return result;
}
void SDGenerator::smoothCFSAngle_(Atom* /*seed*/)
{
// TODO: implement the individual bond alignment!!!
}
void SDGenerator::placeSubstituent_(Atom* seed, Atom* head, Atom* next)
{
bool is_in_pfu = seed->getProperty("InRing").getBool() && next->getProperty("InRing").getBool();
// if the seed atom equals the head atom initialize its CFS values if necessary
if (seed == head && !(seed->hasProperty(SDGenerator::INITIALIZED_HEAD_CFS)))
{
pushCFS_(seed);
// if the head atom is part of a PFU...
if (is_in_pfu)
{
// use the precomputed bond vector as the new CFS high and low
Vector3 old_head_pos;
old_head_pos.x = seed->getProperty("SDGenerator::PFU_x_pos").getFloat();
old_head_pos.y = seed->getProperty("SDGenerator::PFU_y_pos").getFloat();
Vector3 bond = next->getPosition() - old_head_pos;
setCFS_(seed, computeCFS_(bond), false);
setCFS_(seed, computeCFS_(bond), true);
}
else
{
if (next->hasProperty(SDGenerator::CORE_CHAIN))
{
setCFS_(seed, Angle((float) (1./3* Constants::PI), true), false);
setCFS_(seed, Angle((float) (1./3* Constants::PI), true), true);
}
else
{
// use an angle of zero => proceed in x direction
setCFS_(seed, Angle(0.f, true), false);
setCFS_(seed, Angle(0.f, true), true);
}
}
seed->setProperty(SDGenerator::INITIALIZED_HEAD_CFS);
}
// for the bond length, use the standard value ...
double bond_length = options.getReal(Option::STANDARD_BOND_LENGTH);
// ... or, if the bond is in a PFU, use the precomputed length
if (is_in_pfu)
{
// this is a little tricky, since the seed has already been moved
// => use the stored seed position instead
Vector3 old_seed_pos(0.f);
old_seed_pos.x = seed->getProperty("SDGenerator::PFU_x_pos").getFloat();
old_seed_pos.y = seed->getProperty("SDGenerator::PFU_y_pos").getFloat();
bond_length = next->getPosition().getDistance(old_seed_pos);
}
// perform individual bond alignment
smoothCFSAngle_(seed);
// and place the next atom the the correct distance and angle
Angle seed_CFS_lo = getCFS_(seed, false);
if (next->getProperty("InRing").getBool())
{
pushCFS_(next);
next->setProperty("SDGenerator::PFU_x_pos", next->getPosition().x);
next->setProperty("SDGenerator::PFU_y_pos", next->getPosition().y);
}
Vector3 new_position;
new_position.x = (float) (cos(seed_CFS_lo.toRadian())*bond_length);
new_position.y = (float) (sin(seed_CFS_lo.toRadian())*bond_length);
next->setPosition(seed->getPosition() + new_position);
next->setProperty(SDGenerator::ASSEMBLED);
// set up the next atom's CFS as pointing back towards the seed
setCFS_(next, Angle((float) (getCFS_(seed, false).toRadian() - Constants::PI)), false);
setCFS_(next, Angle((float) (getCFS_(seed, false).toRadian() - Constants::PI)), true);
// and take care of the zig-zagging
if (next->hasProperty(CORE_CHAIN))
{
if (!seed->hasProperty(CORE_CHAIN) || seed->hasProperty(ZIG))
{
next->setProperty(ZAG);
}
else
{
next->setProperty(ZIG);
}
}
}
void SDGenerator::depositPFU_(Atom* seed_atom, Atom* next_neighbour)
{
// we have encountered the first bond in a PFU (in our case: a ring system).
// the seed atom and the next neighbour have already been placed, so we
// will need their old and new coordinates
Vector3 seed_pos_new = seed_atom->getPosition();
Vector3 next_pos_new = next_neighbour->getPosition();
Vector3 seed_pos_old(0.f);
seed_pos_old.x = seed_atom->getProperty("SDGenerator::PFU_x_pos").getFloat();
seed_pos_old.y = seed_atom->getProperty("SDGenerator::PFU_y_pos").getFloat();
Vector3 next_pos_old(0.f);
next_pos_old.x = next_neighbour->getProperty("SDGenerator::PFU_x_pos").getFloat();
next_pos_old.y = next_neighbour->getProperty("SDGenerator::PFU_y_pos").getFloat();
//and the old and new bond vectors
Vector3 bond_new = next_pos_new - seed_pos_new;
Vector3 bond_old = next_pos_old - seed_pos_old;
// and the transformation matrix
Angle alpha = bond_old.getAngle(bond_new);
if ((bond_old % bond_new).z < 0)
alpha *= -1.f;
// the transform works as follows:
//
// -- move the anchor of the old bond into the origin
// -- rotate the old bond onto the direction of the new bond
// -- translate the anchor of the rotated old bond to the new anchor position
//
Matrix4x4 transform, to_origin, rotate, translate;
to_origin.setTranslation(-seed_pos_old);
rotate.setRotationZ(alpha);
translate.setTranslation(seed_pos_new);
transform = translate * rotate * to_origin;
// collect all other PFU atoms (excluding seed and next) and ensure we only
// transform each of them once
std::set<Atom*> to_transform;
Position pfu_index;
for (pfu_index = 0; pfu_index < ring_analyser_.getNumberOfRingSystems(); ++pfu_index)
{
if (ring_analyser_.isInRingSystem(seed_atom, pfu_index))
break;
}
std::vector<RingAnalyser::Ring> ringsystem = ring_analyser_.getRingSystem(pfu_index);
for (Position ring_index = 0; ring_index < ringsystem.size(); ++ring_index)
{
std::vector<Atom*>& ring_atoms = ringsystem[ring_index].atoms;
for (Position atom_index = 0; atom_index < ring_atoms.size(); ++atom_index)
{
Atom* atom = ring_atoms[atom_index];
if ((atom != seed_atom) && (atom != next_neighbour))
{
to_transform.insert(atom);
}
}
}
// and transform merrily away
for (std::set<Atom*>::iterator atom_it = to_transform.begin(); atom_it != to_transform.end(); ++atom_it)
{
(*atom_it)->setPosition(transform * (*atom_it)->getPosition());
(*atom_it)->setProperty(SDGenerator::ASSEMBLED);
setCFS_(*atom_it, getCFS_(*atom_it, false) + alpha, false);
setCFS_(*atom_it, getCFS_(*atom_it, true) + alpha, true);
redraw_queue_.push(*atom_it);
}
// now, we just need to put the correct CFS values into seed and next
setCFS_(seed_atom, getCFS_(seed_atom, false) + alpha, false);
setCFS_(seed_atom, getCFS_(seed_atom, true) + alpha, true);
setCFS_(next_neighbour, getCFS_(next_neighbour, false) + alpha, false);
setCFS_(next_neighbour, getCFS_(next_neighbour, true) + alpha, true);
}
void SDGenerator::checkOverlap_(Atom* /*next_neighbour*/)
{
// TODO: implement!!!
}
bool SDGenerator::ringIsClockwise_(const RingAnalyser::Ring& ring, Index start_index) const
{
const Atom* a = ring.atoms[(start_index + 0) % ring.atoms.size()];
const Atom* b = ring.atoms[(start_index + 1) % ring.atoms.size()];
const Atom* c = ring.atoms[(start_index + 2) % ring.atoms.size()];
return ((b->getPosition() - a->getPosition()) % (c->getPosition() - b->getPosition())).z < 0;
}
void SDGenerator::assembleSD_()
{
// find the atom with maximum priority
int max_value = std::numeric_limits<int>::min();
Atom *head_atom;
AtomIterator at_it;
BALL_FOREACH_ATOM(*system_, at_it)
{
int value = at_it->getProperty("SDGenerator::PRIORITY").getInt();
if (value > max_value)
{
max_value = value;
head_atom = &*at_it;
}
}
head_atom->setProperty(SDGenerator::HEAD);
// position the head atom (yay!)
if (head_atom->getProperty("InRing").getBool())
{
// if the head is part of a PFU, we need it's original position
// later to translate and rotate the ring accordingly
head_atom->setProperty("SDGenerator::PFU_x_pos", head_atom->getPosition().x);
head_atom->setProperty("SDGenerator::PFU_y_pos", head_atom->getPosition().y);
}
head_atom->setPosition(Vector3(0.f));
// and put it into the queue
redraw_queue_.push(head_atom);
head_atom->setProperty(SDGenerator::ASSEMBLED);
// now place all the atoms
while (!redraw_queue_.empty())
{
Atom* seed_atom = redraw_queue_.top();
redraw_queue_.pop();
Angle beta = computeAngularSeparation_(seed_atom);
std::vector<Atom*> sequence = sequenceSubstituents_(seed_atom);
// select the placement algorithm
if (seed_atom->getProperty("InRing").getBool())
{
// iterate over the unplaced substituents in the correct order
for (Position next_neighbour_index = 0; next_neighbour_index < sequence.size(); ++next_neighbour_index)
{
Atom* next_neighbour = sequence[next_neighbour_index];
if (!(next_neighbour->hasProperty(SDGenerator::ASSEMBLED)))
{
// rotate the CFS_lo of the seed by beta
if (seed_atom != head_atom || (seed_atom->hasProperty(SDGenerator::INITIALIZED_HEAD_CFS)))
setCFS_(seed_atom, getCFS_(seed_atom, false) + beta, false);
placeSubstituent_(seed_atom, head_atom, next_neighbour);
redraw_queue_.push(next_neighbour);
// if the bond was part of a PFU, deposit it straight away
if (next_neighbour->getProperty("InRing").getBool())
depositPFU_(seed_atom, next_neighbour);
// finally, check for overlap (but don't fix it yet)
checkOverlap_(next_neighbour);
}
}
}
else if (seed_atom->hasProperty(SDGenerator::CORE_CHAIN))
{
// find the correct chain
std::list<Atom*> chain;
for (std::list<std::list<Atom*> >::iterator l_it = chains_.begin(); l_it != chains_.end(); ++l_it)
{
if (std::find(l_it->begin(), l_it->end(), seed_atom) != l_it->end())
{
chain = *l_it;
break;
}
}
// iterate over the unplaced substituents in the correct order
for (Position next_neighbour_index = 0; next_neighbour_index < sequence.size(); ++next_neighbour_index)
{
Atom* next_neighbour = sequence[next_neighbour_index];
if (!(next_neighbour->hasProperty(SDGenerator::ASSEMBLED)))
{
// is the next atom part of the same chain?
std::list<Atom*>::iterator atom_in_chain = std::find(chain.begin(), chain.end(), next_neighbour);
if (atom_in_chain != chain.end())
{
if (seed_atom->hasProperty(ZIG))
{
setCFS_(seed_atom, Angle((float) (getCFS_(seed_atom, false).toRadian() + 4./3.*Constants::PI), true), false);
}
else
{
setCFS_(seed_atom, Angle((float) (getCFS_(seed_atom, false).toRadian() + 2./3.*Constants::PI), true), false);
}
}
else
{
if (seed_atom->hasProperty(ZIG))
{
setCFS_(seed_atom, Angle(getCFS_(seed_atom, false).toRadian() + 2 * beta, true), false);
} else {
setCFS_(seed_atom, Angle(getCFS_(seed_atom, false) + beta, true), false);
}
}
placeSubstituent_(seed_atom, head_atom, next_neighbour);
redraw_queue_.push(next_neighbour);
// TODO: if the seed atom is in a completed double bond, ensure stereochemistry
}
}
}
else // it is neither in a ring nor in a core chain
{
Size num_double_bonds = 0;
Size num_triple_bonds = 0;
Atom::BondIterator b_it;
BALL_FOREACH_ATOM_BOND(*seed_atom, b_it)
{
if (b_it->getOrder() == Bond::ORDER__DOUBLE)
++num_double_bonds;
else if (b_it->getOrder() == Bond::ORDER__TRIPLE)
++num_triple_bonds;
}
if ( (seed_atom->countBonds() == 2)
&& (num_double_bonds <= 2)
&& (num_triple_bonds == 0) )
{
// the atom is pseudotrigonal
beta = Angle((float) (2./3* Constants::PI), true);
}
// iterate over the unplaced substituents in the correct order
for (Position next_neighbour_index = 0; next_neighbour_index < sequence.size(); ++next_neighbour_index)
{
Atom* next_neighbour = sequence[next_neighbour_index];
if (!(next_neighbour->hasProperty(SDGenerator::ASSEMBLED)))
{
if ((seed_atom != head_atom) || seed_atom->hasProperty(SDGenerator::INITIALIZED_HEAD_CFS))
{
// TODO: step (a), step (b)
setCFS_(seed_atom, getCFS_(seed_atom, false) + beta, false);
}
placeSubstituent_(seed_atom, head_atom, next_neighbour);
redraw_queue_.push(next_neighbour);
// TODO: ensure stereo chemistry
}
}
}
}
}
void SDGenerator::setDefaultOptions()
{
options.setDefaultBool(Option::SHOW_HYDROGENS,
Default::SHOW_HYDROGENS);
options.setDefaultReal(Option::STANDARD_BOND_LENGTH,
Default::STANDARD_BOND_LENGTH);
}
} // namespace BALL
|