1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
#include <BALL/XRAY/crystalGenerator.h>
#include <BALL/KERNEL/system.h>
using namespace std;
namespace BALL
{
const string CrystalGenerator::Option::SPACE_GROUP_FILE= "filename";
const string CrystalGenerator::Default::SPACE_GROUP_FILE= "XRAY/spacegroups-details.ini";
CrystalGenerator::CrystalGenerator()
: center_processor_(),
transformer_(),
system_(0),
asu_(0),
unitcell_(0),
filename_(Default::SPACE_GROUP_FILE)
{
}
CrystalGenerator::CrystalGenerator(const CrystalGenerator& cg)
: center_processor_(cg.center_processor_),
transformer_(cg.transformer_),
system_(cg.system_),
asu_(cg.asu_),
unitcell_(cg.unitcell_),
filename_(cg.filename_)
{
}
CrystalGenerator::~CrystalGenerator()
{
system_ = 0;
asu_ = 0;
unitcell_ = 0;
}
void CrystalGenerator::setCrystalInfo(boost::shared_ptr<CrystalInfo> ci_ptr)
{
ci_ptr_ = ci_ptr;
if (buildASU_())
{
cout << "ASU successfully build" << endl;
if (buildUnitCell_())
{
cout << "UnitCell successfully build" << endl;
}
}
}
void CrystalGenerator::setSystem(System* system_ptr)
{
system_ = system_ptr;
ci_ptr_.reset();
if (system_->countProteins() == 0)
{
Log.warn() << "System does not contain any proteins" << std::endl;
}
else
{
//Iterate over all proteins in the system and look for the first CrystalInfo object
for (ProteinIterator pit = system_->beginProtein(); !pit.isEnd(); ++pit)
{
if (pit->hasProperty("CRYSTALINFO"))
{
Log.info() << "CrystalInfo found in Protein " << pit->getName() << std::endl;
ci_ptr_ = boost::dynamic_pointer_cast<CrystalInfo>(pit->getProperty("CRYSTALINFO").getSmartObject());
break;
}
}
}
if (!ci_ptr_)
{
Log.warn() << "No CrystalInfo object found, generating default CrystalInfo" << std::endl;
boost::shared_ptr<CrystalInfo> tmp_ptr(new CrystalInfo());
ci_ptr_ = tmp_ptr;
}
if (buildASU_())
{
cout << "ASU successfully build" << endl;
if (buildUnitCell_())
{
cout << "UnitCell successfully build" << endl;
}
}
}
//void CrystalGenerator::setDensity(RegularData3D* dens_ptr)
//{
//}
std::list<System*> CrystalGenerator::generatePacking(Index a_loweridx, Index a_upperidx, Index b_loweridx, Index b_upperidx, Index c_loweridx, Index c_upperidx)
{
if (a_loweridx > a_upperidx) std::swap(a_loweridx, a_upperidx);
if (b_loweridx > b_upperidx) std::swap(b_loweridx, b_upperidx);
if (c_loweridx > c_upperidx) std::swap(c_loweridx, c_upperidx);
std::list<System*> crystal;
for (Index a = a_loweridx; a <= a_upperidx; a++)
{
for (Index b = b_loweridx; b <= b_upperidx; b++)
{
for (Index c = c_loweridx; c <= c_upperidx; c++)
{
crystal.push_back(generateUnitCell(a,b,c));
}
}
}
return crystal;
}
System* CrystalGenerator::generateUnitCell(Index a, Index b, Index c)
{
System* unitcell = new System(*unitcell_);
unitcell->setName("UNITCELL (" + String(a) + "|" + String(b) + "|" + String(c) +")");
// set CELLTYPE to UNITCELL = 2, TODO: switch to an enum later
unitcell->setProperty("CELLTYPE", (unsigned int)2 );
unitcell->setProperty("UC_IDX_A", (int)a );
unitcell->setProperty("UC_IDX_B", (int)b );
unitcell->setProperty("UC_IDX_C", (int)c );
// define a global transformation matrix
Matrix4x4 transmatrix;
transmatrix.setIdentity();
Matrix4x4 translationmatrix;
transmatrix.setIdentity();
translationmatrix.setTranslation(Vector3(a,b,c));
//to apply the transformation correctly, be aware that the order of multiplications is reversed
// assume two linear mappings:
// f: Cart -> Frac
// g: Cart -> Frac
// composition of both means for matrix multiplications:
// g x f
transmatrix *= ci_ptr_->getFrac2Cart();
transmatrix *= translationmatrix;
transmatrix *= ci_ptr_->getCart2Frac();
transformer_.setTransformation(transmatrix);
unitcell->apply(transformer_);
//Set Unit Cell index for all Molecules in the unit cell
MoleculeIterator mit = unitcell->beginMolecule();
for(; mit != unitcell->endMolecule(); ++mit)
{
mit->setProperty("UC_IDX_A", (int)a );
mit->setProperty("UC_IDX_B", (int)b );
mit->setProperty("UC_IDX_C", (int)c );
}
return unitcell;
}
System* CrystalGenerator::generateUnitCell()
{
return generateUnitCell(0,0,0);
}
System* CrystalGenerator::generateAsymmetricUnit()
{
return asu_;
}
std::list<System*> CrystalGenerator::generateSymMoleculesWithinDistance(float angstrom)
{
// As we calculate the bounding boxes in fractional space
// Scale the distance for every axis
Vector3 distance = Vector3(angstrom, angstrom, angstrom);
distance = ci_ptr_->getCart2Frac() * distance;
transformer_.setTransformation(ci_ptr_->getCart2Frac());
system_->apply(transformer_);
// calulate the bounding box of the system, extended about the distance
BoundingBoxProcessor bbp;
system_->apply(bbp);
Vector3 sys_lo = bbp.getLower();
Vector3 sys_up = bbp.getUpper();
sys_lo = sys_lo - distance;
sys_up = sys_up + distance;
// calculate bounding box for every molecule in the unit cell
// and store them in a vector
vector<SimpleBox3> boundingboxes;
MoleculeIterator mit = unitcell_->beginMolecule();
for (; mit != unitcell_->endMolecule(); ++mit)
{
transformer_.setTransformation(ci_ptr_->getCart2Frac());
mit->apply(transformer_);
mit->apply(bbp);
boundingboxes.push_back(bbp.getBox());
transformer_.setTransformation(ci_ptr_->getFrac2Cart());
mit->apply(transformer_);
}
//for every surrounding unit cell
Vector3 lo, up;
vector<BitVector> boundingbits_vector;
for (Index i = -1; i <= 1; i++)
{
for (Index j = -1; j <= 1; j++)
{
for (Index k = -1; k <= 1; k++)
{
// check if any of the bounding boxes reaches into the extended bounding box of the origin system
BitVector boundingbits;
boundingbits.setSize(boundingboxes.size());
for (vector<SimpleBox3>::iterator it = boundingboxes.begin(); it != boundingboxes.end(); ++it)
{
it->get(lo, up);
bool bbit =( ( ((lo.x + i > sys_lo.x) && (lo.x +i <= sys_up.x))
&& ((lo.y + j > sys_lo.y) && (lo.y +j <= sys_up.y))
&& ((lo.z + k > sys_lo.z) && (lo.z +k <= sys_up.z)) )
||
( ((up.x + i <= sys_up.x) && (up.x +i > sys_lo.x))
&& ((up.y + j <= sys_up.y) && (up.y +j > sys_lo.y))
&& ((up.z + k <= sys_up.z) && (up.z +k > sys_lo.z)) ));
// store clashing information in a bitvector for every unitcell
boundingbits.setBit((it - boundingboxes.begin()), bbit);
}
boundingbits_vector.push_back(boundingbits);
}
}
}
cout << ci_ptr_->getFrac2Cart() * sys_lo << endl;
cout << ci_ptr_->getFrac2Cart() * sys_up << endl;
transformer_.setTransformation(ci_ptr_->getFrac2Cart());
system_->apply(transformer_);
// generate surrounding unitcell, if there are clashing asyymetric units and delete delete non-clashing
std::list<System*> crystal;
System* current_unitcell = 0;
vector<BitVector>::iterator bit = boundingbits_vector.begin();
for (Index a = -1; a <= 1; a++)
{
for (Index b = -1; b <= 1; b++)
{
for (Index c = -1; c <= 1; c++)
{
if (bit->isAnyBit(true))
{
current_unitcell = generateUnitCell(a,b,c);
MoleculeIterator mit = current_unitcell->beginMolecule();
MoleculeIterator temp_mit;
while ( mit != current_unitcell->endMolecule())
{
if (!(bit->getBit(mit->getProperty("ASU_IDX").getUnsignedInt())))
{
temp_mit = mit;
++temp_mit;
(*mit).destroy();
mit = temp_mit;
}
else ++mit;
}
crystal.push_back(current_unitcell);
}
++bit;
}
}
}
return crystal;
}
Box3 CrystalGenerator::getUnitCellBox(Index a, Index b, Index c)
{
Vector3 origin = ci_ptr_->getFrac2Cart() * Vector3(a,b,c);
Vector3 right = ci_ptr_->getFrac2Cart() * Vector3(1,0,0);
Vector3 height = ci_ptr_->getFrac2Cart() * Vector3(0,1,0);
Vector3 depth = ci_ptr_->getFrac2Cart() * Vector3(0,0,1);
Box3 cell(origin, right, height, depth);
return cell;
}
bool CrystalGenerator::buildUnitCell_()
{
unitcell_ = new System();
// set a name and specify the cell type of this system
unitcell_->setName("UNITCELL (0|0|0)");
unitcell_->setProperty("CELLTYPE", (unsigned int)2 );
Size symops_size = ci_ptr_->getNumberOfSymOps();
cout << "symops_size " << symops_size << endl;
//System* current_asu;
Matrix4x4 transmatrix;
for (Position i = 0; i < symops_size; i++)
{
transmatrix.setIdentity();
cout << "symop " << i;
System* current_asu = new System(*asu_);
transmatrix *= ci_ptr_->getFrac2Cart();
transmatrix *= ci_ptr_->getSymOp(i);
transmatrix *= ci_ptr_->getCart2Frac();
transformer_.setTransformation(transmatrix);
current_asu->apply(transformer_);
// Postprocess Molecules in Unit Cell
MoleculeIterator mit = current_asu->beginMolecule();
for(; mit != current_asu->endMolecule(); ++mit)
{
// set cell type and asymmetric unit index for all top level atom
// containers of the current asymmetric unit
mit->setProperty("CELLTYPE", (unsigned int)1 );
mit->setProperty("ASU_IDX", (unsigned int)i );
}
unitcell_->spliceAfter(*current_asu);
cout << endl;
}
//correct positions of the asu's
correctASUPositions_(unitcell_);
cout << "uc_cP" << unitcell_->countProteins() << endl;
cout << "uc_cM" << unitcell_->countMolecules() << endl;
return true;
}
bool CrystalGenerator::buildASU_()
{
asu_ = new System();
Size ncs_symops_size = ci_ptr_->getNumberOfNCSSymOps();
cout << "ncs_symops_size" << ncs_symops_size << endl;
System* current_ncs;
current_ncs = new System(*system_);
asu_->spliceAfter(*current_ncs);
for (Position i = 0; i < ncs_symops_size; i++)
{
cout << "ncs " << i;
// TODO add if for isIdentity
if (!ci_ptr_->isgivenNCS(i))
{
current_ncs = new System(*system_);
transformer_.setTransformation(ci_ptr_->getNCS(i));
current_ncs->apply(transformer_);
asu_->spliceAfter(*current_ncs);
}
else
{
cout << " isgiven ";
}
cout << endl;
}
cout << "asu_cP" << asu_->countProteins() << endl;
cout << "asu_cM" << asu_->countMolecules() << endl;
return true;
}
bool CrystalGenerator::correctASUPositions_(System* raw_cell)
{
// Postprocess Molecules in Unit Cell
Matrix4x4 corr_matrix;
Vector3 center;
Vector3 corr_trans;
MoleculeIterator mit = raw_cell->beginMolecule();
for(; mit != raw_cell->endMolecule(); ++mit)
{
// Shift the molecules into unit cell if their geometric center is
// - necessary because symop transformations do not distinguish application
// order of rotations and translations
corr_matrix.setIdentity();
corr_trans = Vector3(0,0,0);
transformer_.setTransformation(ci_ptr_->getCart2Frac());
mit->apply(transformer_);
mit->apply(center_processor_);
center = center_processor_.getCenter();
for (int k=0; k<3; k++)
{
if (center[k] < 0) corr_trans[k] = 1;
else if (center[k] >= 1) corr_trans[k] = -1;
}
corr_matrix.setTranslation(corr_trans);
corr_matrix = ci_ptr_->getFrac2Cart() * corr_matrix;
transformer_.setTransformation(corr_matrix);
mit->apply(transformer_);
}
return true;
}
}
// namespace BALL
|