1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
//Copyright 2017 Ryan Wick
//This file is part of Bandage
//Bandage is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//Bandage is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//You should have received a copy of the GNU General Public License
//along with Bandage. If not, see <http://www.gnu.org/licenses/>.
#include "blastquery.h"
#include "../program/settings.h"
#include "../graph/path.h"
#include "../graph/debruijnnode.h"
#include <limits>
#include <vector>
#include <utility>
BlastQuery::BlastQuery(QString name, QString sequence) :
m_name(name), m_sequence(sequence), m_searchedFor(false), m_shown(true)
{
autoSetSequenceType();
}
//This function looks at the query sequence to decide if it is
//a nucleotide or protein sequence.
void BlastQuery::autoSetSequenceType()
{
//If the sequence contains a letter that's in the protein
//alphabet but not in the extended DNA alphabet, then it's
//a protein
if (m_sequence.contains('e') || m_sequence.contains('E') ||
m_sequence.contains('f') || m_sequence.contains('F') ||
m_sequence.contains('i') || m_sequence.contains('I') ||
m_sequence.contains('l') || m_sequence.contains('L') ||
m_sequence.contains('p') || m_sequence.contains('P') ||
m_sequence.contains('q') || m_sequence.contains('Q'))
{
m_sequenceType = PROTEIN;
return;
}
//If the code got here, then it's a bit trickier. It could
//possibly be an extended alphabet DNA sequence or a protein
//sequence without particular amino acids.
//Look to see if A, C, G, T and N make up 75% or more of
//the sequence. If so, it's DNA. If not, it's
//protein.
int length = m_sequence.length();
int nuclLetters = m_sequence.count('a') + m_sequence.count('A') +
m_sequence.count('c') + m_sequence.count('C') +
m_sequence.count('g') + m_sequence.count('G') +
m_sequence.count('t') + m_sequence.count('T') +
m_sequence.count('n') + m_sequence.count('N');
if (double(nuclLetters) / length >= 0.75)
m_sequenceType = NUCLEOTIDE;
else
m_sequenceType = PROTEIN;
}
QString BlastQuery::getTypeString() const
{
if (m_sequenceType == NUCLEOTIDE)
return "nucl";
else
return "prot";
}
void BlastQuery::clearSearchResults()
{
m_searchedFor = false;
m_hits.clear();
}
//This function tries to find the paths through the graph which cover the query.
void BlastQuery::findQueryPaths()
{
m_paths = QList<BlastQueryPath>();
if (m_hits.size() > g_settings->maxHitsForQueryPath)
return;
int queryLength = m_sequence.length();
if (m_sequenceType == PROTEIN)
queryLength *= 3;
//Find all possible path starts within an acceptable distance from the query
//start.
QList<BlastHit *> possibleStarts;
double acceptableStartFraction = 1.0 - g_settings->minQueryCoveredByPath;
for (int i = 0; i < m_hits.size(); ++i)
{
BlastHit * hit = m_hits[i].data();
if (hit->m_queryStartFraction <= acceptableStartFraction)
possibleStarts.push_back(hit);
}
//Find all possible path ends.
QList<BlastHit *> possibleEnds;
double acceptableEndFraction = g_settings->minQueryCoveredByPath;
for (int i = 0; i < m_hits.size(); ++i)
{
BlastHit * hit = m_hits[i].data();
if (hit->m_queryEndFraction >= acceptableEndFraction)
possibleEnds.push_back(hit);
}
//For each possible start, find paths to each possible end.
QList<Path> possiblePaths;
for (int i = 0; i < possibleStarts.size(); ++i)
{
BlastHit * start = possibleStarts[i];
GraphLocation startLocation = start->getHitStart();
for (int j = 0; j < possibleEnds.size(); ++j)
{
BlastHit * end = possibleEnds[j];
GraphLocation endLocation = end->getHitEnd();
//Assuming there is a path from the start hit to the end hit,
//determine the ideal length. This is the query length minus the
//parts of the query not covered by the start and end.
int partialQueryLength = queryLength;
int pathStart = start->m_queryStart - 1;
int pathEnd = end->m_queryEnd;
if (m_sequenceType == PROTEIN)
{
pathStart *= 3;
pathEnd *= 3;
}
partialQueryLength -= pathStart;
partialQueryLength -= queryLength - pathEnd;
//Determine the minimum and maximum lengths allowed for the path.
int minLength;
if (g_settings->minLengthPercentage.on && g_settings->minLengthBaseDiscrepancy.on) //both on
minLength = std::max(int(partialQueryLength * g_settings->minLengthPercentage + 0.5), partialQueryLength + g_settings->minLengthBaseDiscrepancy);
else if (g_settings->minLengthPercentage.on && !g_settings->minLengthBaseDiscrepancy.on) //just relative
minLength = int(partialQueryLength * g_settings->minLengthPercentage + 0.5);
else if (!g_settings->minLengthPercentage.on && g_settings->minLengthBaseDiscrepancy.on) //just absolute
minLength = partialQueryLength + g_settings->minLengthBaseDiscrepancy;
else //neither are on
minLength = 1;
int maxLength;
if (g_settings->maxLengthPercentage.on && g_settings->maxLengthBaseDiscrepancy.on) //both on
maxLength = std::min(int(partialQueryLength * g_settings->maxLengthPercentage + 0.5), partialQueryLength + g_settings->maxLengthBaseDiscrepancy);
else if (g_settings->maxLengthPercentage.on && !g_settings->maxLengthBaseDiscrepancy.on) //just relative
maxLength = int(partialQueryLength * g_settings->maxLengthPercentage + 0.5);
else if (!g_settings->maxLengthPercentage.on && g_settings->maxLengthBaseDiscrepancy.on) //just absolute
maxLength = partialQueryLength + g_settings->maxLengthBaseDiscrepancy;
else //neither are on
maxLength = std::numeric_limits<int>::max();
possiblePaths.append(Path::getAllPossiblePaths(startLocation,
endLocation,
g_settings->maxQueryPathNodes - 1,
minLength,
maxLength));
}
}
//Now we use the Path objects to make BlastQueryPath objects. These contain
//BLAST-specific information that the Path class doesn't.
QList<BlastQueryPath> blastQueryPaths;
for (int i = 0; i < possiblePaths.size(); ++i)
blastQueryPaths.push_back(BlastQueryPath(possiblePaths[i], this));
//We now want to throw out any paths for which the hits fail to meet the
//thresholds in settings.
QList<BlastQueryPath> sufficientCoveragePaths;
for (int i = 0; i < blastQueryPaths.size(); ++i)
{
if (blastQueryPaths[i].getPathQueryCoverage() < g_settings->minQueryCoveredByPath)
continue;
if (g_settings->minQueryCoveredByHits.on && blastQueryPaths[i].getHitsQueryCoverage() < g_settings->minQueryCoveredByHits)
continue;
if (g_settings->maxEValueProduct.on && blastQueryPaths[i].getEvalueProduct() > g_settings->maxEValueProduct)
continue;
if (g_settings->minMeanHitIdentity.on && blastQueryPaths[i].getMeanHitPercIdentity() < 100.0 * g_settings->minMeanHitIdentity)
continue;
if (g_settings->minLengthPercentage.on && blastQueryPaths[i].getRelativePathLength() < g_settings->minLengthPercentage)
continue;
if (g_settings->maxLengthPercentage.on && blastQueryPaths[i].getRelativePathLength() > g_settings->maxLengthPercentage)
continue;
if (g_settings->minLengthBaseDiscrepancy.on && blastQueryPaths[i].getAbsolutePathLengthDifference() < g_settings->minLengthBaseDiscrepancy)
continue;
if (g_settings->maxLengthBaseDiscrepancy.on && blastQueryPaths[i].getAbsolutePathLengthDifference() > g_settings->maxLengthBaseDiscrepancy)
continue;
sufficientCoveragePaths.push_back(blastQueryPaths[i]);
}
//We now want to throw out any paths which are sub-paths of other, larger
//paths.
for (int i = 0; i < sufficientCoveragePaths.size(); ++i)
{
bool throwOut = false;
for (int j = 0; j < sufficientCoveragePaths.size(); ++j)
{
//No need to compare a path with itself.
if (i == j)
continue;
if (sufficientCoveragePaths[i].getPath().hasNodeSubset(sufficientCoveragePaths[j].getPath()))
{
throwOut = true;
break;
}
}
if (!throwOut)
m_paths.push_back(sufficientCoveragePaths[i]);
}
//Now we sort the paths from best to worst.
std::sort(m_paths.begin(), m_paths.end());
}
//This function returns the fraction of the query that is covered by BLAST hits.
//If a list of BLAST hits is passed to the function, it only looks in those
//hits. If no such list is passed, it looks in all hits for this query.
// http://stackoverflow.com/questions/5276686/merging-ranges-in-c
double BlastQuery::fractionCoveredByHits(const QList<BlastHit *> * hitsToCheck) const
{
int hitBases = 0;
int queryLength = getLength();
if (queryLength == 0)
return 0.0;
std::vector<std::pair<int, int> > ranges;
if (hitsToCheck == 0) {
for (int i = 0; i < m_hits.size(); ++i) {
BlastHit * hit = m_hits[i].data();
ranges.push_back(std::pair<int,int>(hit->m_queryStart - 1, hit->m_queryEnd));
}
}
else {
for (int i = 0; i < hitsToCheck->size(); ++i) {
BlastHit * hit = (*hitsToCheck)[i];
ranges.push_back(std::pair<int,int>(hit->m_queryStart - 1, hit->m_queryEnd));
}
}
if (ranges.size() == 0)
return 0.0;
std::sort(ranges.begin(), ranges.end());
std::vector<std::pair<int, int> > mergedRanges;
std::vector<std::pair<int, int> >::iterator it = ranges.begin();
std::pair<int,int> current = *(it)++;
while (it != ranges.end())
{
if (current.second >= it->first) {
current.second = std::max(current.second, it->second);
} else {
mergedRanges.push_back(current);
current = *(it);
}
it++;
}
mergedRanges.push_back(current);
for (size_t i = 0; i < mergedRanges.size(); ++i)
hitBases += mergedRanges[i].second - mergedRanges[i].first;
return double(hitBases) / queryLength;
}
|