1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
//Copyright 2017 Ryan Wick
//This file is part of Bandage
//Bandage is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//Bandage is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//You should have received a copy of the GNU General Public License
//along with Bandage. If not, see <http://www.gnu.org/licenses/>.
#include "debruijnnode.h"
#include "debruijnedge.h"
#include "ogdfnode.h"
#include "graphicsitemnode.h"
#include <math.h>
#include "../blast/blasthit.h"
#include "../blast/blastquery.h"
#include "assemblygraph.h"
#include <set>
#include <QApplication>
#include <QSet>
//The length parameter is optional. If it is set, then the node will use that
//for its length. If not set, it will just use the sequence length.
DeBruijnNode::DeBruijnNode(QString name, double depth, QByteArray sequence, int length) :
m_name(name),
m_depth(depth),
m_depthRelativeToMeanDrawnDepth(1.0),
m_sequence(sequence),
m_length(sequence.length()),
m_contiguityStatus(NOT_CONTIGUOUS),
m_reverseComplement(0),
m_ogdfNode(0),
m_graphicsItemNode(0),
m_specialNode(false),
m_drawn(false),
m_highestDistanceInNeighbourSearch(0),
m_csvData()
{
if (length > 0)
m_length = length;
}
DeBruijnNode::~DeBruijnNode()
{
if (m_ogdfNode != 0)
delete m_ogdfNode;
}
//This function adds an edge to the Node, but only if the edge hasn't already
//been added.
void DeBruijnNode::addEdge(DeBruijnEdge * edge)
{
if (std::find(m_edges.begin(), m_edges.end(), edge) == m_edges.end())
m_edges.push_back(edge);
}
//This function deletes an edge from the node, if it exists.
void DeBruijnNode::removeEdge(DeBruijnEdge * edge)
{
m_edges.erase(std::remove(m_edges.begin(), m_edges.end(), edge), m_edges.end());
}
//This function resets the node to the state it would be in after a graph
//file was loaded - no contiguity status and no OGDF nodes.
void DeBruijnNode::resetNode()
{
if (m_ogdfNode != 0)
delete m_ogdfNode;
m_ogdfNode = 0;
m_graphicsItemNode = 0;
resetContiguityStatus();
setAsNotDrawn();
setAsNotSpecial();
m_highestDistanceInNeighbourSearch = 0;
}
void DeBruijnNode::addToOgdfGraph(ogdf::Graph * ogdfGraph, ogdf::GraphAttributes * graphAttributes,
ogdf::EdgeArray<double> * edgeArray, double xPos, double yPos)
{
//If this node or its reverse complement is already in OGDF, then
//it's not necessary to make the node.
if (thisOrReverseComplementInOgdf())
return;
//Create the OgdfNode object
m_ogdfNode = new OgdfNode();
//Each node in the Velvet sense is made up of multiple nodes in the
//OGDF sense. This way, Velvet nodes appear as lines whose length
//corresponds to the sequence length.
double drawnNodeLength = getDrawnNodeLength();
int numberOfGraphEdges = getNumberOfOgdfGraphEdges(drawnNodeLength);
int numberOfGraphNodes = numberOfGraphEdges + 1;
double drawnLengthPerEdge = drawnNodeLength / numberOfGraphEdges;
ogdf::node newNode = 0;
ogdf::node previousNode = 0;
for (int i = 0; i < numberOfGraphNodes; ++i)
{
newNode = ogdfGraph->newNode();
m_ogdfNode->addOgdfNode(newNode);
if (g_assemblyGraph->useLinearLayout()) {
graphAttributes->x(newNode) = xPos;
graphAttributes->y(newNode) = yPos;
xPos += g_settings->nodeSegmentLength;
}
if (i > 0)
{
ogdf::edge newEdge = ogdfGraph->newEdge(previousNode, newNode);
(*edgeArray)[newEdge] = drawnLengthPerEdge;
}
previousNode = newNode;
}
}
double DeBruijnNode::getDrawnNodeLength() const
{
double drawnNodeLength = getNodeLengthPerMegabase() * double(getLength()) / 1000000.0;
if (drawnNodeLength < g_settings->minimumNodeLength)
drawnNodeLength = g_settings->minimumNodeLength;
return drawnNodeLength;
}
int DeBruijnNode::getNumberOfOgdfGraphEdges(double drawnNodeLength) const
{
int numberOfGraphEdges = ceil(drawnNodeLength / g_settings->nodeSegmentLength);
if (numberOfGraphEdges <= 0)
numberOfGraphEdges = 1;
return numberOfGraphEdges;
}
//This function determines the contiguity of nodes relative to this one.
//It has two steps:
// -First, for each edge leaving this node, all paths outward are found.
// Any nodes in any path are MAYBE_CONTIGUOUS, and nodes in all of the
// paths are CONTIGUOUS.
// -Second, it is necessary to check in the opposite direction - for each
// of the MAYBE_CONTIGUOUS nodes, do they have a path that unambiguously
// leads to this node? If so, then they are CONTIGUOUS.
void DeBruijnNode::determineContiguity()
{
upgradeContiguityStatus(STARTING);
//A set is used to store all nodes found in the paths, as the nodes
//that show up as MAYBE_CONTIGUOUS will have their paths checked
//to this node.
std::set<DeBruijnNode *> allCheckedNodes;
//For each path leaving this node, find all possible paths
//outward. Nodes in any of the paths for an edge are
//MAYBE_CONTIGUOUS. Nodes in all of the paths for an edge
//are CONTIGUOUS.
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
bool outgoingEdge = (this == edge->getStartingNode());
std::vector< std::vector <DeBruijnNode *> > allPaths;
edge->tracePaths(outgoingEdge, g_settings->contiguitySearchSteps, &allPaths, this);
//Set all nodes in the paths as MAYBE_CONTIGUOUS
for (size_t j = 0; j < allPaths.size(); ++j)
{
QApplication::processEvents();
for (size_t k = 0; k < allPaths[j].size(); ++k)
{
DeBruijnNode * node = allPaths[j][k];
node->upgradeContiguityStatus(MAYBE_CONTIGUOUS);
allCheckedNodes.insert(node);
}
}
//Set all common nodes as CONTIGUOUS_STRAND_SPECIFIC
std::vector<DeBruijnNode *> commonNodesStrandSpecific = getNodesCommonToAllPaths(&allPaths, false);
for (size_t j = 0; j < commonNodesStrandSpecific.size(); ++j)
(commonNodesStrandSpecific[j])->upgradeContiguityStatus(CONTIGUOUS_STRAND_SPECIFIC);
//Set all common nodes (when including reverse complement nodes)
//as CONTIGUOUS_EITHER_STRAND
std::vector<DeBruijnNode *> commonNodesEitherStrand = getNodesCommonToAllPaths(&allPaths, true);
for (size_t j = 0; j < commonNodesEitherStrand.size(); ++j)
{
DeBruijnNode * node = commonNodesEitherStrand[j];
node->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
node->getReverseComplement()->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
}
}
//For each node that was checked, then we check to see if any
//of its paths leads unambiuously back to the starting node (this node).
for (std::set<DeBruijnNode *>::iterator i = allCheckedNodes.begin(); i != allCheckedNodes.end(); ++i)
{
QApplication::processEvents();
DeBruijnNode * node = *i;
ContiguityStatus status = node->getContiguityStatus();
//First check without reverse complement target for
//strand-specific contiguity.
if (status != CONTIGUOUS_STRAND_SPECIFIC &&
node->doesPathLeadOnlyToNode(this, false))
node->upgradeContiguityStatus(CONTIGUOUS_STRAND_SPECIFIC);
//Now check including the reverse complement target for
//either strand contiguity.
if (status != CONTIGUOUS_STRAND_SPECIFIC &&
status != CONTIGUOUS_EITHER_STRAND &&
node->doesPathLeadOnlyToNode(this, true))
{
node->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
node->getReverseComplement()->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
}
}
}
//This function differs from the above by including all reverse complement
//nodes in the path search.
std::vector<DeBruijnNode *> DeBruijnNode::getNodesCommonToAllPaths(std::vector< std::vector <DeBruijnNode *> > * paths,
bool includeReverseComplements) const
{
std::vector<DeBruijnNode *> commonNodes;
//If there are no paths, then return the empty vector.
if (paths->size() == 0)
return commonNodes;
//If there is only one path in path, then they are all common nodes
commonNodes = (*paths)[0];
if (paths->size() == 1)
return commonNodes;
//If there are two or more paths, it's necessary to find the intersection.
for (size_t i = 1; i < paths->size(); ++i)
{
QApplication::processEvents();
std::vector <DeBruijnNode *> * path = &((*paths)[i]);
//If we are including reverse complements in the search,
//then it is necessary to build a new vector that includes
//reverse complement nodes and then use that vector.
std::vector <DeBruijnNode *> pathWithReverseComplements;
if (includeReverseComplements)
{
for (size_t j = 0; j < path->size(); ++j)
{
DeBruijnNode * node = (*path)[j];
pathWithReverseComplements.push_back(node);
pathWithReverseComplements.push_back(node->getReverseComplement());
}
path = &pathWithReverseComplements;
}
//Combine the commonNodes vector with the path vector,
//excluding any repeats.
std::sort(commonNodes.begin(), commonNodes.end());
std::sort(path->begin(), path->end());
std::vector<DeBruijnNode *> newCommonNodes;
std::set_intersection(commonNodes.begin(), commonNodes.end(), path->begin(), path->end(), std::back_inserter(newCommonNodes));
commonNodes = newCommonNodes;
}
return commonNodes;
}
//This function checks whether this node has any path leading outward that
//unambiguously leads to the given node.
//It checks a number of steps as set by the contiguitySearchSteps setting.
//If includeReverseComplement is true, then this function returns true if
//all paths lead either to the node or its reverse complement node.
bool DeBruijnNode::doesPathLeadOnlyToNode(DeBruijnNode * node, bool includeReverseComplement)
{
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
bool outgoingEdge = (this == edge->getStartingNode());
std::vector<DeBruijnNode *> pathSoFar;
pathSoFar.push_back(this);
if (edge->leadsOnlyToNode(outgoingEdge, g_settings->contiguitySearchSteps, node, pathSoFar, includeReverseComplement))
return true;
}
return false;
}
//This function only upgrades a node's status, never downgrades.
void DeBruijnNode::upgradeContiguityStatus(ContiguityStatus newStatus)
{
if (newStatus < m_contiguityStatus)
m_contiguityStatus = newStatus;
}
//It is expected that the argument connectedNode is either in incomingNodes or
//outgoingNodes. If that node is the only one in whichever container it is in,
//this function returns true.
bool DeBruijnNode::isOnlyPathInItsDirection(DeBruijnNode * connectedNode,
std::vector<DeBruijnNode *> * incomingNodes,
std::vector<DeBruijnNode *> * outgoingNodes) const
{
std::vector<DeBruijnNode *> * container;
if (std::find(incomingNodes->begin(), incomingNodes->end(), connectedNode) != incomingNodes->end())
container = incomingNodes;
else
container = outgoingNodes;
return (container->size() == 1 && (*container)[0] == connectedNode);
}
bool DeBruijnNode::isNotOnlyPathInItsDirection(DeBruijnNode * connectedNode,
std::vector<DeBruijnNode *> * incomingNodes,
std::vector<DeBruijnNode *> * outgoingNodes) const
{
return !isOnlyPathInItsDirection(connectedNode, incomingNodes, outgoingNodes);
}
QByteArray DeBruijnNode::getFasta(bool sign, bool newLines, bool evenIfEmpty) const
{
QByteArray sequence = getSequence();
if (sequence.isEmpty() && !evenIfEmpty)
return QByteArray();
QByteArray fasta = ">";
fasta += getNodeNameForFasta(sign).toUtf8();
fasta += "\n";
if (newLines)
fasta += AssemblyGraph::addNewlinesToSequence(sequence);
else
{
fasta += sequence;
fasta += "\n";
}
return fasta;
}
QByteArray DeBruijnNode::getGfaSegmentLine(QString depthTag) const
{
QByteArray gfaSequence = getSequenceForGfa();
QByteArray gfaSegmentLine = "S";
gfaSegmentLine += "\t" + getNameWithoutSign().toUtf8();
gfaSegmentLine += "\t" + gfaSequence;
gfaSegmentLine += "\tLN:i:" + QString::number(gfaSequence.length()).toUtf8();
//We use the depthTag to guide how we save the node depth.
//If it is empty, that implies that the loaded graph did not have depth
//information and so we don't save depth.
if (depthTag == "DP")
gfaSegmentLine += "\tDP:f:" + QString::number(getDepth()).toUtf8();
else if (depthTag == "KC")
gfaSegmentLine += "\tKC:i:" + QString::number(int(getDepth() * gfaSequence.length() + 0.5)).toUtf8();
else if (depthTag == "RC")
gfaSegmentLine += "\tRC:i:" + QString::number(int(getDepth() * gfaSequence.length() + 0.5)).toUtf8();
else if (depthTag == "FC")
gfaSegmentLine += "\tFC:i:" + QString::number(int(getDepth() * gfaSequence.length() + 0.5)).toUtf8();
//If the user has included custom labels or colours, include those.
if (!m_customLabel.isEmpty())
gfaSegmentLine += "\tLB:z:" + getCustomLabel().toUtf8();
if (!m_reverseComplement->m_customLabel.isEmpty())
gfaSegmentLine += "\tL2:z:" + m_reverseComplement->getCustomLabel().toUtf8();
if (hasCustomColour())
gfaSegmentLine += "\tCL:z:" + getColourName(getCustomColour()).toUtf8();
if (m_reverseComplement->hasCustomColour())
gfaSegmentLine += "\tC2:z:" + getColourName(m_reverseComplement->getCustomColour()).toUtf8();
gfaSegmentLine += "\n";
return gfaSegmentLine;
}
//This function gets the node's sequence for a GFA file. It has two main
//differences from getSequence:
// -If the graph is from Velvet, it will extend the node sequences
// -If the sequence is missing, it will just give "*"
QByteArray DeBruijnNode::getSequenceForGfa() const
{
if (sequenceIsMissing())
return QByteArray("*");
if (g_assemblyGraph->m_graphFileType != LAST_GRAPH)
return getSequence();
//If the code got here, then we are getting a full sequence from a Velvet
//LastGraph graph, so we need to extend the beginning of the sequence.
int extensionLength = g_assemblyGraph->m_kmer - 1;
//If the node is at least k-1 in length, then the necessary sequence can be
//deduced from the reverse complement node.
if (getLength() >= extensionLength)
{
QByteArray revCompSeq = getReverseComplement()->getSequence();
QByteArray endOfRevCompSeq = revCompSeq.right(extensionLength);
QByteArray extension = AssemblyGraph::getReverseComplement(endOfRevCompSeq);
return extension + getSequence();
}
//If the node is not long enough, then we must look in upstream nodes for
//the rest of the sequence.
else
{
QByteArray extension = getUpstreamSequence(extensionLength);
if (extension.length() < extensionLength)
{
int additionalBases = extensionLength - extension.length();
QByteArray n;
n.fill('N', additionalBases);
extension = n + extension;
}
return extension + getSequence();
}
}
QByteArray DeBruijnNode::getUpstreamSequence(int upstreamSequenceLength) const
{
std::vector<DeBruijnNode*> upstreamNodes = getUpstreamNodes();
QByteArray bestUpstreamNodeSequence;
for (size_t i = 0; i < upstreamNodes.size(); ++i)
{
DeBruijnNode * upstreamNode = upstreamNodes[i];
QByteArray upstreamNodeFullSequence = upstreamNode->getSequence();
QByteArray upstreamNodeSequence;
//If the upstream node has enough sequence, great!
if (upstreamNodeFullSequence.length() >= upstreamSequenceLength)
upstreamNodeSequence = upstreamNodeFullSequence.right(upstreamSequenceLength);
//If the upstream node does not have enough sequence, then we need to
//look even further upstream.
else
upstreamNodeSequence = upstreamNode->getUpstreamSequence(upstreamSequenceLength - upstreamNodeFullSequence.length()) + upstreamNodeFullSequence;
//If we now have enough sequence, then we can return it.
if (upstreamNodeSequence.length() == upstreamSequenceLength)
return upstreamNodeSequence;
//If we don't have enough sequence, then we need to try the next
//upstream node. If our current one is the best so far, save that in
//case no complete sequence is found.
if (upstreamNodeSequence.length() > bestUpstreamNodeSequence.length())
bestUpstreamNodeSequence = upstreamNodeSequence;
}
//If the code got here, that means that not enough upstream sequence was
//found in any path! Return what we have managed to get so far.
return bestUpstreamNodeSequence;
}
int DeBruijnNode::getFullLength() const
{
if (g_assemblyGraph->m_graphFileType != LAST_GRAPH)
return getLength();
else
return getLength() + g_assemblyGraph->m_kmer - 1;
}
int DeBruijnNode::getLengthWithoutTrailingOverlap() const
{
int length = getLength();
std::vector<DeBruijnEdge *> leavingEdges = getLeavingEdges();
if (leavingEdges.size() == 0)
return length;
int maxOverlap = 0;
for (size_t i = 0; i < leavingEdges.size(); ++i)
{
int overlap = leavingEdges[i]->getOverlap();
if (overlap > maxOverlap)
maxOverlap = overlap;
}
length -= maxOverlap;
if (length < 0)
length = 0;
return length;
}
QString DeBruijnNode::getNodeNameForFasta(bool sign) const
{
QString nodeNameForFasta;
nodeNameForFasta += "NODE_";
if (sign)
nodeNameForFasta += getName();
else
nodeNameForFasta += getNameWithoutSign();
nodeNameForFasta += "_length_";
nodeNameForFasta += QByteArray::number(getLength());
nodeNameForFasta += "_cov_";
nodeNameForFasta += QByteArray::number(getDepth());
return nodeNameForFasta;
}
//This function recursively labels all nodes as drawn that are within a
//certain distance of this node. Whichever node called this will
//definitely be drawn, so that one is excluded from the recursive call.
void DeBruijnNode::labelNeighbouringNodesAsDrawn(int nodeDistance, DeBruijnNode * callingNode)
{
if (m_highestDistanceInNeighbourSearch > nodeDistance)
return;
m_highestDistanceInNeighbourSearch = nodeDistance;
if (nodeDistance == 0)
return;
DeBruijnNode * otherNode;
for (size_t i = 0; i < m_edges.size(); ++i)
{
otherNode = m_edges[i]->getOtherNode(this);
if (otherNode == callingNode)
continue;
if (g_settings->doubleMode)
otherNode->m_drawn = true;
else //single mode
{
if (otherNode->isPositiveNode())
otherNode->m_drawn = true;
else
otherNode->getReverseComplement()->m_drawn = true;
}
otherNode->labelNeighbouringNodesAsDrawn(nodeDistance-1, this);
}
}
std::vector<BlastHitPart> DeBruijnNode::getBlastHitPartsForThisNode(double scaledNodeLength) const
{
std::vector<BlastHitPart> returnVector;
for (size_t i = 0; i < m_blastHits.size(); ++i)
{
std::vector<BlastHitPart> hitParts = m_blastHits[i]->getBlastHitParts(false, scaledNodeLength);
returnVector.insert(returnVector.end(), hitParts.begin(), hitParts.end());
}
return returnVector;
}
std::vector<BlastHitPart> DeBruijnNode::getBlastHitPartsForThisNodeOrReverseComplement(double scaledNodeLength) const
{
const DeBruijnNode * positiveNode = this;
const DeBruijnNode * negativeNode = getReverseComplement();
if (isNegativeNode())
std::swap(positiveNode, negativeNode);
//Look for blast hit parts on both the positive and the negative node,
//since hits were previously filtered such that startPos < endPos,
//hence we need to look at both positive and negative nodes to recover all hits.
std::vector<BlastHitPart> returnVector;
for (size_t i = 0; i < positiveNode->m_blastHits.size(); ++i)
{
std::vector<BlastHitPart> hitParts = positiveNode->m_blastHits[i]->getBlastHitParts(false, scaledNodeLength);
returnVector.insert(returnVector.end(), hitParts.begin(), hitParts.end());
}
for (size_t i = 0; i < negativeNode->m_blastHits.size(); ++i)
{
std::vector<BlastHitPart> hitParts = negativeNode->m_blastHits[i]->getBlastHitParts(true, scaledNodeLength);
returnVector.insert(returnVector.end(), hitParts.begin(), hitParts.end());
}
return returnVector;
}
bool DeBruijnNode::isPositiveNode() const
{
QChar lastChar = m_name.at(m_name.length() - 1);
return lastChar == '+';
}
bool DeBruijnNode::isNegativeNode() const
{
QChar lastChar = m_name.at(m_name.length() - 1);
return lastChar == '-';
}
//This function checks to see if the passed node leads into
//this node. If so, it returns the connecting edge. If not,
//it returns a null pointer.
DeBruijnEdge * DeBruijnNode::doesNodeLeadIn(DeBruijnNode * node) const
{
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
if (edge->getStartingNode() == node && edge->getEndingNode() == this)
return edge;
}
return 0;
}
//This function checks to see if the passed node leads away from
//this node. If so, it returns the connecting edge. If not,
//it returns a null pointer.
DeBruijnEdge * DeBruijnNode::doesNodeLeadAway(DeBruijnNode * node) const
{
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
if (edge->getStartingNode() == this && edge->getEndingNode() == node)
return edge;
}
return 0;
}
bool DeBruijnNode::isNodeConnected(DeBruijnNode * node) const
{
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
if (edge->getStartingNode() == node || edge->getEndingNode() == node)
return true;
}
return false;
}
std::vector<DeBruijnEdge *> DeBruijnNode::getEnteringEdges() const
{
std::vector<DeBruijnEdge *> returnVector;
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
if (this == edge->getEndingNode())
returnVector.push_back(edge);
}
return returnVector;
}
std::vector<DeBruijnEdge *> DeBruijnNode::getLeavingEdges() const
{
std::vector<DeBruijnEdge *> returnVector;
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
if (this == edge->getStartingNode())
returnVector.push_back(edge);
}
return returnVector;
}
std::vector<DeBruijnNode *> DeBruijnNode::getDownstreamNodes() const
{
std::vector<DeBruijnEdge *> leavingEdges = getLeavingEdges();
std::vector<DeBruijnNode *> returnVector;
for (size_t i = 0; i < leavingEdges.size(); ++i)
returnVector.push_back(leavingEdges[i]->getEndingNode());
return returnVector;
}
std::vector<DeBruijnNode *> DeBruijnNode::getUpstreamNodes() const
{
std::vector<DeBruijnEdge *> enteringEdges = getEnteringEdges();
std::vector<DeBruijnNode *> returnVector;
for (size_t i = 0; i < enteringEdges.size(); ++i)
returnVector.push_back(enteringEdges[i]->getStartingNode());
return returnVector;
}
double DeBruijnNode::getNodeLengthPerMegabase() const
{
if (g_settings->nodeLengthMode == AUTO_NODE_LENGTH)
return g_settings->autoNodeLengthPerMegabase;
else
return g_settings->manualNodeLengthPerMegabase;
}
bool DeBruijnNode::isInDepthRange(double min, double max) const
{
return m_depth >= min && m_depth <= max;
}
bool DeBruijnNode::sequenceIsMissing() const
{
return m_sequence == "*" || (m_sequence == "" && m_length > 0);
}
QByteArray DeBruijnNode::getSequence() const
{
if (sequenceIsMissing() && g_assemblyGraph->m_sequencesLoadedFromFasta == NOT_TRIED)
g_assemblyGraph->attemptToLoadSequencesFromFasta();
//If the sequence is still missing, return a string of Ns equal to the
//sequence length.
if (sequenceIsMissing())
return QByteArray(m_length, 'N');
else
return m_sequence;
}
//If the node has an edge which leads to itself (creating a loop), this function
//will return it. Otherwise, it returns 0.
DeBruijnEdge * DeBruijnNode::getSelfLoopingEdge() const
{
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
if (edge->getStartingNode() == this && edge->getEndingNode() == this)
return edge;
}
return 0;
}
//This function returns either 0, 1 or 2. A node with connections on both ends
//(i.e. has both incoming and outgoing edges) returns 0. A node with no edges
//returns 2. A node with either incoming or outgoing edges returns 1.
int DeBruijnNode::getDeadEndCount() const
{
if (m_edges.size() == 0)
return 2;
std::vector<DeBruijnEdge *> enteringEdges = getEnteringEdges();
std::vector<DeBruijnEdge *> leavingEdges = getLeavingEdges();
if (enteringEdges.size() > 0 && leavingEdges.size() > 0)
return 0;
else
return 1;
}
//This function returns all of the positive nodes that this node (or its
//reverse complement) are connected to.
std::vector<DeBruijnNode *> DeBruijnNode::getAllConnectedPositiveNodes() const
{
QSet<DeBruijnNode *> connectedPositiveNodesSet;
for (size_t i = 0; i < m_edges.size(); ++i)
{
DeBruijnEdge * edge = m_edges[i];
DeBruijnNode * connectedNode = edge->getOtherNode(this);
if (connectedNode->isNegativeNode())
connectedNode = connectedNode->getReverseComplement();
connectedPositiveNodesSet.insert(connectedNode);
}
std::vector<DeBruijnNode *> connectedPositiveNodesVector;
QSetIterator<DeBruijnNode *> i(connectedPositiveNodesSet);
while (i.hasNext())
connectedPositiveNodesVector.push_back(i.next());
return connectedPositiveNodesVector;
}
void DeBruijnNode::setCustomLabel(QString newLabel)
{
newLabel.replace("\t", " ");
m_customLabel = newLabel;
}
QStringList DeBruijnNode::getCustomLabelForDisplay() const
{
QStringList customLabelLines;
if (!getCustomLabel().isEmpty()) {
QStringList labelLines = getCustomLabel().split("\\n");
for (int i = 0; i < labelLines.size(); ++i)
customLabelLines << labelLines[i];
}
if (!g_settings->doubleMode && !m_reverseComplement->getCustomLabel().isEmpty()) {
QStringList labelLines2 = m_reverseComplement->getCustomLabel().split("\n");
for (int i = 0; i < labelLines2.size(); ++i)
customLabelLines << labelLines2[i];
}
return customLabelLines;
}
QColor DeBruijnNode::getCustomColourForDisplay() const
{
if (hasCustomColour())
return getCustomColour();
if (!g_settings->doubleMode && m_reverseComplement->hasCustomColour())
return m_reverseComplement->getCustomColour();
return g_settings->defaultCustomNodeColour;
}
|