1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/*
* $Revision: 2523 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-02 20:59:27 +0200 (Mon, 02 Jul 2012) $
***************************************************************/
/** \file
* \brief Declaration of CombinatorialEmbedding and face.
*
* Enriches graph by the notion of faces
*
* \author Carsten Gutwenger
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_COMBINATORIAL_EMBEDDING_H
#define OGDF_COMBINATORIAL_EMBEDDING_H
#include "AdjEntryArray.h"
namespace ogdf {
class OGDF_EXPORT ConstCombinatorialEmbedding;
typedef FaceElement *face;
/**
* \brief Faces in a combinatorial embedding.
*/
class OGDF_EXPORT FaceElement : private GraphElement
{
friend class ConstCombinatorialEmbedding;
friend class CombinatorialEmbedding;
friend class GraphList<FaceElement>;
adjEntry m_adjFirst; //!< The first adjacency element in the face.
int m_id; //!< The index of the face.
int m_size; //!< The size of the face.
#ifdef OGDF_DEBUG
const ConstCombinatorialEmbedding *m_pEmbedding;
#endif
// constructor
#ifdef OGDF_DEBUG
FaceElement(const ConstCombinatorialEmbedding *pEmbedding,
adjEntry adjFirst,
int id) :
m_adjFirst(adjFirst), m_id(id), m_size(0), m_pEmbedding(pEmbedding) { }
#else
//! Creates a face with given first adjacency element \a adjFirst and face index \a id.
FaceElement(adjEntry adjFirst, int id) :
m_adjFirst(adjFirst), m_id(id), m_size(0) { }
#endif
public:
//! Returns the index of the face.
int index() const { return m_id; }
//! Returns the first adjacency element in the face.
adjEntry firstAdj() const { return m_adjFirst; }
//! Returns the size of the face, i.e., the number of edges in the face.
int size() const { return m_size; }
//! Returns the successor in the list of all faces.
face succ() const { return (face)m_next; }
//! Returns the predecessor in the list of all faces.
face pred() const { return (face)m_prev; }
//! Returns the successor of \a adj in the list of all adjacency elements in the face.
adjEntry nextFaceEdge(adjEntry adj) const {
adj = adj->faceCycleSucc();
return (adj != m_adjFirst) ? adj : 0;
}
#ifdef OGDF_DEBUG
const ConstCombinatorialEmbedding *embeddingOf() const { return m_pEmbedding; }
#endif
OGDF_NEW_DELETE
}; // class FaceElement
class FaceArrayBase;
template<class T>class FaceArray;
/**
* \brief Combinatorial embeddings of planar graphs.
*
* Maintains a combinatorial embedding of an embedded graph, i.e., the set of
* faces. A combinatorial embedding is defined by the (cyclic) order of the
* adjacency entries around a vertex; more precisely, the adjacency list
* gives the cyclic order of the adjacency entries in clockwise order.
* Each adjacency entry \a adj is contained in exactly one face, the face
* to the right of \a adj. The list of adjacency entries defining a face is given
* in clockwise order for internal faces, and in counter-clockwise order for the
* external face.
*
* \see CombinatorialEmbedding provides additional functionality for modifying
* the embedding.
*/
class OGDF_EXPORT ConstCombinatorialEmbedding
{
protected:
const Graph *m_cpGraph; //!< The associated graph.
GraphList<FaceElement> m_faces; //!< The list of all faces.
int m_nFaces; //!< The number of faces.
int m_faceIdCount; //!< The index assigned to the next created face.
int m_faceArrayTableSize; //!< The current table size of face arrays.
AdjEntryArray<face> m_rightFace; //!< The face to which an adjacency entry belongs.
face m_externalFace; //! The external face.
mutable ListPure<FaceArrayBase*> m_regFaceArrays; //!< The registered face arrays.
public:
/** @{
* \brief Creates a combinatorial embedding associated with no graph.
*/
ConstCombinatorialEmbedding();
/**
* \brief Creates a combinatorial embedding of graph \a G.
*
* \pre Graph \a G must be embedded, i.e., the adjacency lists of its nodes
* must define an embedding.
*/
explicit ConstCombinatorialEmbedding(const Graph &G);
//! Copy constructor.
ConstCombinatorialEmbedding(const ConstCombinatorialEmbedding &C);
//! Assignment operator.
ConstCombinatorialEmbedding &operator=(const ConstCombinatorialEmbedding &C);
/** @} @{
* \brief Returns the associated graph of the combinatorial embedding.
*/
const Graph &getGraph() const { return *m_cpGraph; }
//! Returns associated graph
operator const Graph &() const { return *m_cpGraph; }
/** @} @{
* \brief Returns the first face in the list of all faces.
*/
face firstFace() const { return m_faces.begin(); }
//! Returns the last face in the list of all faces.
face lastFace() const { return m_faces.rbegin(); }
//! Returns the number of faces.
int numberOfFaces() const { return m_nFaces; }
/** @} @{
* \brief Returns the face to the right of \a adj, i.e., the face containing \a adj.
* @param adj is an adjecency element in the associated graph.
*/
face rightFace(adjEntry adj) const { return m_rightFace[adj]; }
/**
* \brief Returns the face to the left of \a adj, i.e., the face containing the twin of \a adj.
* @param adj is an adjacency element in the associated graph.
*/
face leftFace(adjEntry adj) const { return m_rightFace[adj->twin()]; }
/** @} @{
* \brief Returns the largest used face index.
*/
int maxFaceIndex() const { return m_faceIdCount-1; }
//! Returns the table size of face arrays associated with this embedding.
int faceArrayTableSize() const { return m_faceArrayTableSize; }
/** @} @{
* \brief Returns a random face.
*/
face chooseFace() const;
//! Returns a face of maximal size.
face maximalFace() const;
/** @} @{
* \brief Returns the external face.
*/
face externalFace() const {
return m_externalFace;
}
/**
* \brief Sets the external face to \a f.
* @param f is a face in this embedding.
*/
void setExternalFace(face f) {
OGDF_ASSERT(f->embeddingOf() == this);
m_externalFace = f;
}
bool isBridge(edge e) const {
return m_rightFace[e->adjSource()] == m_rightFace[e->adjTarget()];
}
/** @} @{
* \brief Initializes the embedding for graph \a G.
*
* \pre Graph \a G must be embedded, i.e., the adjacency lists of its nodes
* must define an embedding.
*/
void init(const Graph &G);
void init();
//! Computes the list of faces.
void computeFaces();
/** @} @{
* \brief Checks the consistency of the data structure.
*/
bool consistencyCheck();
/** @} @{
* \brief Registers the face array \a pFaceArray.
*
* This method is only used by face arrays.
*/
ListIterator<FaceArrayBase*> registerArray(FaceArrayBase *pFaceArray) const;
/**
* \brief Unregisters the face array identified by \a it.
*
* This method is only used by face arrays.
*/
void unregisterArray(ListIterator<FaceArrayBase*> it) const;
/** @} */
protected:
//! Create a new face.
face createFaceElement(adjEntry adjFirst);
//! Reinitialize associated face arrays.
void reinitArrays();
}; // class ConstCombinatorialEmbedding
/**
* \brief Combinatorial embeddings of planar graphs with modification functionality.
*
* Maintains a combinatorial embedding of an embedded graph, i.e., the set of
* faces, and provides method for modifying the embedding, e.g., by inserting edges.
*/
class OGDF_EXPORT CombinatorialEmbedding : public ConstCombinatorialEmbedding
{
Graph *m_pGraph; //!< The associated graph.
// the following methods are private in order to make them unusable
// It is not clear which meaning copying of a comb. embedding should
// have since we only store a pointer to the topology (Graph)
CombinatorialEmbedding(const CombinatorialEmbedding &) : ConstCombinatorialEmbedding() { }
CombinatorialEmbedding &operator=(const CombinatorialEmbedding &) {
return *this;
}
public:
/** @{
* \brief Creates a combinatorial embedding associated with no graph.
*/
CombinatorialEmbedding() : ConstCombinatorialEmbedding() {
m_pGraph = 0;
}
/**
* \brief Creates a combinatorial embedding of graph \a G.
*
* \pre Graph \a G must be embedded, i.e., the adjacency lists of its nodes
* must define an embedding.
*/
explicit CombinatorialEmbedding(Graph &G) : ConstCombinatorialEmbedding(G) {
m_pGraph = &G;
}
//@}
/**
* @name Access to the associated graph
*/
//@{
/**
* \brief Returns the associated graph.
*/
const Graph &getGraph() const { return *m_cpGraph; }
Graph &getGraph() { return *m_pGraph; }
operator const Graph &() const { return *m_cpGraph; }
operator Graph &() { return *m_pGraph; }
//@}
/**
* @name Initialization
*/
//@{
/**
* \brief Initializes the embedding for graph \a G.
*
* \pre Graph \a G must be embedded, i.e., the adjacency lists of its nodes
* must define an embedding.
*/
void init(Graph &G) {
ConstCombinatorialEmbedding::init(G);
m_pGraph = &G;
}
/**
* \brief Removes all nodes, edges, and faces from the graph and the embedding.
*/
void clear();
//@}
/**
* @name Update of embedding
*/
//@{
/**
* \brief Splits edge \a e=(\a v,\a w) into \a e=(\a v,\a u) and \a e'=(\a u,\a w) creating a new node \a u.
* @param e is the edge to be split; \a e is modified by the split.
* \return the edge \a e'.
*/
edge split(edge e);
/**
* \brief Undoes a split operation.
* @param eIn is the edge (\a v,\a u).
* @param eOut is the edge (\a u,\a w).
*/
void unsplit(edge eIn, edge eOut);
/**
* \brief Splits a node while preserving the order of adjacency entries.
*
* This method splits a node \a v into two nodes \a vl and \a vr. Node
* \a vl receives all adjacent edges of \a v from \a adjStartLeft until
* the edge preceding \a adjStartRight, and \a vr the remaining nodes
* (thus \a adjStartRight is the first edge that goes to \a vr). The
* order of adjacency entries is preserved. Additionally, a new edge
* (\a vl,\a vr) is created, such that this edge is inserted before
* \a adjStartLeft and \a adjStartRight in the the adjacency lists of
* \a vl and \a vr.
*
* Node \a v is modified to become node \a vl, and node \a vr is returned.
*
* @param adjStartLeft is the first entry that goes to the left node.
* @param adjStartRight is the first entry that goes to the right node.
* \return the newly created node.
*/
node splitNode(adjEntry adjStartLeft, adjEntry adjStartRight);
/**
* \brief Contracts edge \a e.
* @param e is an edge is the associated graph.
* @return the node resulting from the contraction.
*/
node contract(edge e);
/**
* \brief Splits a face by inserting a new edge.
*
* This operation introduces a new edge \a e from the node to which \a adjSrc
* belongs to the node to which \a adjTgt belongs.
* \pre \a adjSrc and \a adjTgt belong to the same face.
* \return the new edge \a e.
*/
edge splitFace(adjEntry adjSrc, adjEntry adjTgt);
// incremental stuff
//special version of the above function doing a pushback of the new edge
//on the adjacency list of v making it possible to insert new degree 0
//nodes into a face
edge splitFace(node v, adjEntry adjTgt);
edge splitFace(adjEntry adjSrc, node v);
/**
* \brief Removes edge e and joins the two faces adjacent to \a e.
* @param e is an edge in the associated graph.
* \return the resulting (joined) face.
*/
face joinFaces(edge e);
//! Reverses edges \a e and updates embedding.
void reverseEdge(edge e);
void moveBridge(adjEntry adjBridge, adjEntry adjBefore);
void removeDeg1(node v);
//! Update face information after inserting a merger in a copy graph.
void updateMerger(edge e, face fRight, face fLeft);
/** @} */
}; // class CombinatorialEmbedding
//---------------------------------------------------------
// iteration macros
//---------------------------------------------------------
//! Iteration over all faces \a f of the combinatorial embedding \a E.
#define forall_faces(f,E) for((f)=(E).firstFace(); (f); (f)=(f)->succ())
//! Iteration over all faces \a f of the combinatorial embedding \a E (in reverse order).
#define forall_rev_faces(f,E) for((f)=(E).lastFace(); (f); (f)=(f)->pred())
/**
* \brief Iteration over all adjacency entries \a adj of the face \a f.
*
* A faster version for this iteration demonstrates the following code snippet:
* \code
* adjEntry adj1 = f->firstAdj(), adj = adj1;
* do {
* ...
* adj = adj->faceCycleSucc();
* } while (adj != adj1);
* \endcode
*/
#define forall_face_adj(adj,f) for((adj)=(f)->firstAdj(); (adj); (adj)=(f)->nextFaceEdge(adj))
} // end namespace ogdf
#endif
|