File: Graph_d.h

package info (click to toggle)
bandage 0.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 15,684 kB
  • sloc: cpp: 45,359; sh: 491; makefile: 12
file content (1560 lines) | stat: -rw-r--r-- 49,011 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
/*
 * $Revision: 2615 $
 *
 * last checkin:
 *   $Author: gutwenger $
 *   $Date: 2012-07-16 14:23:36 +0200 (Mo, 16. Jul 2012) $
 ***************************************************************/

/** \file
 * \brief Pure declaration header, find template implementation in
 *        Graph.h
 *
 * Declaration of NodeElement, EdgeElement, and Graph classes.
 *
 * \author Carsten Gutwenger
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/





#ifdef _MSC_VER
#pragma once
#endif

#ifndef OGDF_GRAPH_D_H
#define OGDF_GRAPH_D_H


#include "List.h"


namespace ogdf {

//
// in embedded graphs, adjacency lists are given in clockwise order.
//


class OGDF_EXPORT Graph;
class OGDF_EXPORT NodeElement;
class OGDF_EXPORT EdgeElement;
class OGDF_EXPORT AdjElement;
class OGDF_EXPORT FaceElement;
class OGDF_EXPORT GraphListBase;
class OGDF_EXPORT ClusterElement;


//! The base class for objects used by graphs like nodes, edges, etc.
/**
 * Such graph objects are maintained in list (see GraphList<T>),
 * and \a GraphElement basically provides a next and previous pointer
 * for these objects.
 */
class OGDF_EXPORT GraphElement {
	friend class Graph;
	friend class GraphListBase;

protected:
	GraphElement *m_next; //!< The successor in the list.
	GraphElement *m_prev; //!< The predecessor in the list.

	OGDF_NEW_DELETE
}; // class GraphElement


//! Base class for GraphElement lists.
class OGDF_EXPORT GraphListBase {
protected:
	GraphElement *m_head; //!< Pointer to the first element in the list.
	GraphElement *m_tail; //!< Pointer to the last element in the list.

public:
	//! Constructs an empty list.
	GraphListBase() { m_head = m_tail = 0; }
	// destruction
	~GraphListBase() { }

	//! Adds element \a pX at the end of the list.
	void pushBack(GraphElement *pX) {
		pX->m_next = 0;
		pX->m_prev = m_tail;
		if (m_head)
			m_tail = m_tail->m_next = pX;
		else
			m_tail = m_head = pX;
	}

	//! Inserts element \a pX after element \a pY.
	void insertAfter(GraphElement *pX, GraphElement *pY) {
		pX->m_prev = pY;
		GraphElement *pYnext = pX->m_next = pY->m_next;
		pY->m_next = pX;
		if (pYnext) pYnext->m_prev = pX;
		else m_tail = pX;
	}

	//! Inserts element \a pX before element \a pY.
	void insertBefore(GraphElement *pX, GraphElement *pY) {
		pX->m_next = pY;
		GraphElement *pYprev = pX->m_prev = pY->m_prev;
		pY->m_prev = pX;
		if (pYprev) pYprev->m_next = pX;
		else m_head = pX;
	}

	//! Removes element \a pX from the list.
	void del(GraphElement *pX) {
		GraphElement *pxPrev = pX->m_prev, *pxNext = pX->m_next;

		if (pxPrev)
			pxPrev->m_next = pxNext;
		else
			m_head = pxNext;
		if (pxNext)
			pxNext->m_prev = pxPrev;
		else
			m_tail = pxPrev;
	}

	//! Sorts the list according to \a newOrder.
	template<class LIST>
	void sort(const LIST &newOrder) {
		GraphElement *pPred = 0;
		typename LIST::const_iterator it = newOrder.begin();
		if (!it.valid()) return;

		m_head = *it;
		for(; it.valid(); ++it) {
			GraphElement *p = *it;
			if ((p->m_prev = pPred) != 0) pPred->m_next = p;
			pPred = p;
		}

		(m_tail = pPred)->m_next = 0;
	}

	//! Reverses the order of the list elements.
	void reverse() {
		GraphElement *pX = m_head;
		m_head = m_tail;
		m_tail = pX;
		while(pX) {
			GraphElement *pY = pX->m_next;
			pX->m_next = pX->m_prev;
			pX = pX->m_prev = pY;
		}
	}

	//! Exchanges the positions of \a pX and \a pY in the list.
	void swap(GraphElement *pX, GraphElement *pY) {
		if (pX->m_next == pY) {
			pX->m_next = pY->m_next;
			pY->m_prev = pX->m_prev;
			pY->m_next = pX;
			pX->m_prev = pY;

		} else if(pY->m_next == pX) {
			pY->m_next = pX->m_next;
			pX->m_prev = pY->m_prev;
			pX->m_next = pY;
			pY->m_prev = pX;

		} else {
			::swap(pX->m_next,pY->m_next);
			::swap(pX->m_prev,pY->m_prev);
		}

		if(pX->m_prev)
			pX->m_prev->m_next = pX;
		else
			m_head = pX;
		if(pX->m_next)
			pX->m_next->m_prev = pX;
		else
			m_tail = pX;

		if(pY->m_prev)
			pY->m_prev->m_next = pY;
		else
			m_head = pY;
		if(pY->m_next)
			pY->m_next->m_prev = pY;
		else
			m_tail = pY;

		OGDF_ASSERT(consistencyCheck());
	}


	//! Checks consistency of graph list.
	bool consistencyCheck() {
		if (m_head == 0) {
			return (m_tail == 0);

		} else if (m_tail == 0) {
			return false;

		} else {
			if (m_head->m_prev != 0)
				return false;
			if (m_tail->m_next != 0)
				return false;

			GraphElement *pX = m_head;
			for(; pX; pX = pX->m_next) {
				if (pX->m_prev) {
					if (pX->m_prev->m_next != pX)
						return false;
				} else if(pX != m_head)
					return false;

				if (pX->m_next) {
					if (pX->m_next->m_prev != pX)
						return false;
				} else if (pX != m_tail)
					return false;
			}
		}

		return true;
	}

	OGDF_NEW_DELETE
}; // class GraphListBase


//! Lists of graph objects (like nodes, edges, etc.).
/**
 * The template type \a T must be a class derived from GraphElement.
 */
template<class T> class GraphList : protected GraphListBase {
public:
	//! Constructs an empty list.
	GraphList() { }
	// destruction (deletes all elements)
	~GraphList() {
		if (m_head)
			OGDF_ALLOCATOR::deallocateList(sizeof(T), m_head,m_tail);
	}

	//! Returns the first element in the list.
	T *begin () const { return (T *)m_head; }
	//! Returns the last element in the list.
	T *rbegin() const { return (T *)m_tail; }

	//! Returns true iff the list is empty.
	bool empty() { return m_head; }

	//! Adds element \a pX at the end of the list.
	void pushBack(T *pX) {
		GraphListBase::pushBack(pX);
	}

	//! Inserts element \a pX after element \a pY.
	void insertAfter(T *pX, T *pY) {
		GraphListBase::insertAfter(pX,pY);
	}

	//! Inserts element \a pX before element \a pY.
	void insertBefore(T *pX, T *pY) {
		GraphListBase::insertBefore(pX,pY);
	}

	//! Moves element \a pX to list \a L and inserts it before or after \a pY.
	void move(T *pX, GraphList<T> &L, T *pY, Direction dir) {
		GraphListBase::del(pX);
		if (dir == after)
			L.insertAfter(pX,pY);
		else
			L.insertBefore(pX,pY);
	}

	//! Moves element \a pX to list \a L and inserts it at the end.
	void move(T *pX, GraphList<T> &L) {
		GraphListBase::del(pX);
		L.pushBack(pX);
	}

	//! Moves element \a pX from its current position to a position after \a pY.
	void moveAfter(T *pX, T *pY){
		GraphListBase::del(pX);
		insertAfter(pX,pY);
	}

	//! Moves element \a pX from its current position to a position before \a pY.
	void moveBefore(T *pX, T *pY){
		GraphListBase::del(pX);
		insertBefore(pX,pY);
	}

	//! Removes element \a pX from the list and deletes it.
	void del(T *pX) {
		GraphListBase::del(pX);
		delete pX;
	}

	//! Only removes element \a pX from the list; does not delete it.
	void delPure(T *pX) {
		GraphListBase::del(pX);
	}

	//! Removes all elements from the list and deletes them.
	void clear() {
		if (m_head) {
			OGDF_ALLOCATOR::deallocateList(sizeof(T),m_head,m_tail);
			m_head = m_tail = 0;
		}
	}

	//! Sorts all elements according to \a newOrder.
	template<class T_LIST>
	void sort(const T_LIST &newOrder) {
		GraphListBase::sort(newOrder);
	}


	//! Reverses the order of the list elements.
	void reverse() {
		GraphListBase::reverse();
	}

	//! Exchanges the positions of \a pX and \a pY in the list.
	void swap(T *pX, T *pY) {
		GraphListBase::swap(pX,pY);
	}


	//! Checks consistency of graph list; returns true if ok.
	bool consistencyCheck() {
		return GraphListBase::consistencyCheck();
	}


	OGDF_NEW_DELETE
}; // class GraphList<T>


typedef NodeElement *node; //!< The type of nodes.
typedef EdgeElement *edge; //!< The type of edges.
typedef AdjElement *adjEntry; //!< The type of adjacency entries.



//! Class for adjacency list elements.
/**
 * Adjacency list elements represent the occurrence of an edges in
 * the adjacency list of a node.
 */
class OGDF_EXPORT AdjElement : private GraphElement {
	friend class Graph;
	friend class GraphListBase;
	friend class GraphList<AdjElement>;

	AdjElement *m_twin; //!< The corresponding adjacency entry (same edge)
	edge m_edge; //!< The associated edge.
	node m_node; //!< The node whose adjacency list contains this entry.
	int m_id;    //!< The (unique) index of the adjacency entry.

	//! Constructs an adjacency element for a given node.
	AdjElement(node v) : m_node(v) { }
	//! Constructs an adjacency entry for a given edge and index.
	AdjElement(edge e, int id) : m_edge(e), m_id(id) { }

public:
	//! Returns the edge associated with this adjacency entry.
	edge theEdge() const { return m_edge; }
	//! Conversion to edge.
	operator edge() const { return m_edge; }
	//! Returns the node whose adjacency list contains this element.
	node theNode() const { return m_node; }

	//! Returns the corresponding adjacency element associated with the same edge.
	adjEntry twin() const { return m_twin; }

	//! Returns the associated node of the corresponding adjacency entry (shorthand for twin()->theNode()).
	node twinNode() const { return m_twin->m_node; }

	//! Returns the index of this adjacency element.
	int index() const { return m_id; }

	// traversing faces in clockwise (resp. counter-clockwise) order
	// (if face is an interior face)

	//! Returns the clockwise successor in face. Use faceCycleSucc instead!
	adjEntry clockwiseFaceSucc() const { return m_twin->cyclicPred(); }
	//! Returns the clockwise predecessor in face.  Use faceCycleSucc instead!
	adjEntry clockwiseFacePred() const { return cyclicSucc()->m_twin; }
	//! Returns the counter-clockwise successor in face.
	adjEntry counterClockwiseFaceSucc() const { return m_twin->cyclicSucc(); }
	//! Returns the counter-clockwise predecessor in face.
	adjEntry counterClockwiseFacePred() const { return cyclicPred()->m_twin; }

	// default is traversing faces in clockwise order
	//! Returns the cyclic successor in face.
	adjEntry faceCycleSucc() const { return clockwiseFaceSucc(); }
	//! Returns the cyclic predecessor in face.
	adjEntry faceCyclePred() const { return clockwiseFacePred(); }


	//! Returns the successor in the adjacency list.
	adjEntry succ() const { return (adjEntry)m_next; }
	//! Returns the predecessor in the adjacency list.
	adjEntry pred() const { return (adjEntry)m_prev; }

	//! Returns the cyclic successor in the adjacency list.
	adjEntry cyclicSucc() const;
	//! Returns the cyclic predecessor in the adjacency list.
	adjEntry cyclicPred() const;

#ifdef OGDF_DEBUG
	const Graph *graphOf() const;
#endif

	OGDF_NEW_DELETE
}; // class AdjElement


//! Class for the representation of nodes.
class OGDF_EXPORT NodeElement : private GraphElement {
	friend class Graph;
	friend class GraphList<NodeElement>;

	GraphList<AdjElement> m_adjEdges; //!< The adjacency list of the node.
	int m_indeg;  //!< The indegree of the node.
	int m_outdeg; //!< The outdegree of the node.
	int m_id;     //!< The (unique) index of the node.

#ifdef OGDF_DEBUG
	// we store the graph containing this node for debugging purposes
	const Graph *m_pGraph; //!< The graph containg this node (debug only).
#endif


	// construction
#ifdef OGDF_DEBUG
	//! Constructs a node element with index \a id.
	/**
	 * \remarks The parameter \a pGraph is only passed in a debug build.
	 * It is used, e.g., by NodeArray for checking if a node belongs to
	 * the correct graph.
	 */
	NodeElement(const Graph *pGraph, int id) :
		m_indeg(0), m_outdeg(0), m_id(id), m_pGraph(pGraph) { }
#else
	NodeElement(int id) : m_indeg(0), m_outdeg(0), m_id(id) { }
#endif


public:
	//! Returns the (unique) node index.
	int index() const { return m_id; }

	//! Returns the indegree of the node.
	int indeg() const { return m_indeg; }
	//! Returns the outdegree of the node.
	int outdeg() const { return m_outdeg; }
	//! Returns the degree of the node (indegree + outdegree).
	int degree() const { return m_indeg + m_outdeg; }

	//! Returns the first entry in the adjaceny list.
	adjEntry firstAdj() const { return m_adjEdges.begin();  }
	//! Returns the last entry in the adjacency list.
	adjEntry lastAdj () const { return m_adjEdges.rbegin(); }

	//! Returns the successor in the list of all nodes.
	node succ() const { return (node)m_next; }
	//! Returns the predecessor in the list of all nodes.
	node pred() const { return (node)m_prev; }

#ifdef OGDF_DEBUG
	//! Returns the graph containing this node (debug only).
	const Graph *graphOf() const { return m_pGraph; }
#endif

	OGDF_NEW_DELETE
}; // class NodeElement


inline adjEntry AdjElement::cyclicSucc() const
{
	return (m_next) ? (adjEntry)m_next : m_node->firstAdj();
}

inline adjEntry AdjElement::cyclicPred() const
{
	return (m_prev) ? (adjEntry)m_prev : m_node->lastAdj();
}

inline bool test_forall_adj_edges(adjEntry &adj, edge &e)
{
	if (adj) { e = adj->theEdge(); return true; }
	else return false;
}



//! Class for the representation of edges.
class OGDF_EXPORT EdgeElement : private GraphElement {
	friend class Graph;
	friend class GraphList<EdgeElement>;

	node m_src; //!< The source node of the edge.
	node m_tgt; //!< The target node of the edge.
	AdjElement *m_adjSrc; //!< Corresponding adjacancy entry at source node.
	AdjElement *m_adjTgt; //!< Corresponding adjacancy entry at target node.
	int m_id; // The (unique) index of the node.

	//! Constructs an edge element (\a src,\a tgt).
	/**
	 * @param src is the source node of the edge.
	 * @param tgt is the target node of the edge.
	 * @param adjSrc is the corresponding adjacency entry at source node.
	 * @param adjTgt is the corresponding adjacency entry at target node.
	 * @param id is the index of the edge.
	 */
	EdgeElement(node src, node tgt, AdjElement *adjSrc, AdjElement *adjTgt, int id) :
		m_src(src), m_tgt(tgt), m_adjSrc(adjSrc), m_adjTgt(adjTgt), m_id(id) { }

	//! Constructs an edge element (\a src,\a tgt).
	/**
	 * @param src is the source node of the edge.
	 * @param tgt is the target node of the edge.
	 * @param id is the index of the edge.
	 */
	EdgeElement(node src, node tgt, int id) :
		m_src(src), m_tgt(tgt), m_id(id) { }

public:
	//! Returns the index of the edge.
	int index() const { return m_id; }
	//! Returns the source node of the edge.
	node source() const { return m_src; }
	//! Returns the target node of the edge.
	node target() const { return m_tgt; }

	//! Returns the corresponding adjacancy entry at source node.
	adjEntry adjSource() const { return m_adjSrc; }
	//! Returns the corresponding adjacancy entry at target node.
	adjEntry adjTarget() const { return m_adjTgt; }

	//! Returns the adjacent node different from \a v.
	node opposite(node v) const { return (v == m_src) ? m_tgt : m_src; }
	// Returns true iff the edge is a self-loop (source node = target node).
	bool isSelfLoop() const { return m_src == m_tgt; }

	//! Returns the successor in the list of all edges.
	edge succ() const { return (edge)m_next; }
	//! Returns the predecessor in the list of all edges.
	edge pred() const { return (edge)m_prev; }

#ifdef OGDF_DEBUG
	//! Returns the graph containing this node (debug only).
	const Graph *graphOf() const { return m_src->graphOf(); }
#endif

	//! Returns true iff \a v is incident to the edge.
	bool isIncident(node v) const { return v == m_src || v == m_tgt; }

	//! Returns the common node of the edge and \a e. Returns NULL if the two edges are not adjacent.
	node commonNode(edge e) const { return (m_src==e->m_src || m_src==e->m_tgt) ? m_src : ((m_tgt==e->m_src || m_tgt==e->m_tgt) ? m_tgt: 0); }

	OGDF_NEW_DELETE
}; // class EdgeElement


#ifdef OGDF_DEBUG
inline const Graph *AdjElement::graphOf() const {
	return m_node->graphOf();
}
#endif


template<>inline bool doDestruction<node>(const node *) { return false; }
template<>inline bool doDestruction<edge>(const edge *) { return false; }
template<>inline bool doDestruction<adjEntry>(const adjEntry *) { return false; }

class NodeArrayBase;
class EdgeArrayBase;
class AdjEntryArrayBase;
template<class T> class NodeArray;
template<class T> class EdgeArray;
template<class T> class AdjEntryArray;
class OGDF_EXPORT GraphObserver;


//---------------------------------------------------------
// iteration macros
//---------------------------------------------------------

//! Iteration over all nodes \a v of graph \a G.
#define forall_nodes(v,G) for((v)=(G).firstNode(); (v); (v)=(v)->succ())
//! Iteration over all nodes \a v of graph \a G in reverse order.
#define forall_rev_nodes(v,G) for((v)=(G).lastNode(); (v); (v)=(v)->pred())

//! Iteration over all edges \a e of graph \a G.
#define forall_edges(e,G) for((e)=(G).firstEdge(); (e); (e)=(e)->succ())
//! Iteration over all edges \a e of graph \a G in reverse order.
#define forall_rev_edges(e,G) for((e)=(G).lastEdge(); (e); (e)=(e)->pred())

//! Iteration over all adjacency list entries \a adj of node \a v.
#define forall_adj(adj,v) for((adj)=(v)->firstAdj(); (adj); (adj)=(adj)->succ())
//! Iteration over all adjacency list entries \a adj of node \a v in reverse order.
#define forall_rev_adj(adj,v) for((adj)=(v)->lastAdj(); (adj); (adj)=(adj)->pred())

//! Iteration over all adjacent edges \a e of node \a v.
#define forall_adj_edges(e,v)\
for(ogdf::adjEntry ogdf_loop_var=(v)->firstAdj();\
	ogdf::test_forall_adj_edges(ogdf_loop_var,(e));\
	ogdf_loop_var=ogdf_loop_var->succ())


//! Data type for general directed graphs (adjacency list representation).
/**
 * <H3>Iteration</H3>
 * Besides the usage of iteration macros defined in Graph_d.h, the following
 * code is recommended for further iteration tasks.
 * <ul>
 *   <li> Iteration over all outgoing edges \a e of node \a v:
 *     \code
 *  forall_adj_edges(e,v)
 *    if(e->source() != v) continue;
 *     \endcode
 *
 *   <li> Iteration over all ingoing edges \a e of node \a v:
 *     \code
 *  forall_adj_edges(e,v)
 *	  if(e->target() != v) continue;
 *     \endcode
 *
 *   <li> Iteration over all nodes \a x reachable by an outgoing edge \a e
 *        of node \a v (without self-loops):
 *     \code
 *  forall_adj_edges(e,v)
 *    if ((x = e->target()) == v) continue;
 *     \endcode
 *
 *   <li> Iteration over all nodes \a x reachable by an outgoing edge \a e
 *        of node \a v (with self-loops):
 *     \code
 *  forall_adj_edges(e,v) {
 *    if (e->source() != v) continue;
 *    x = e->target();
 *  }
 *     \endcode
 *
 *  <li> Iteration over all nodes \a x reachable by an ingoing edge \a e
 *       of node \a v (without self-loops):
 *     \code
 *  forall_adj_edges(e,v)
 *    if ((x = e->source()) == v) continue;
 *     \endcode
 *
 * <li> Iteration over all nodes \a x reachable by an ingoing edge \a e
 *      of node \a v (with self-loops):
 *     \code
 *  forall_adj_edges(e,v) {
 *    if (e->target() != v) continue;
 *    x = e->source();
 *  }
 *     \endcode
 * </ul>
 */

class OGDF_EXPORT Graph
{
	GraphList<NodeElement> m_nodes; //!< The list of all nodes.
	GraphList<EdgeElement> m_edges; //!< The list of all edges.
	int m_nNodes; //!< The number of nodes in the graph.
	int m_nEdges; //!< The number of edges in the graph.

	int m_nodeIdCount; //!< The Index that will be assigned to the next created node.
	int m_edgeIdCount; //!< The Index that will be assigned to the next created edge.

	int m_nodeArrayTableSize; //!< The current table size of node arrays associated with this graph.
	int m_edgeArrayTableSize; //!< The current table size of edge arrays associated with this graph.

	mutable ListPure<NodeArrayBase*> m_regNodeArrays; //!< The registered node arrays.
	mutable ListPure<EdgeArrayBase*> m_regEdgeArrays; //!< The registered edge arrays.
	mutable ListPure<AdjEntryArrayBase*> m_regAdjArrays;  //!< The registered adjEntry arrays.
	mutable ListPure<GraphObserver*> m_regStructures; //!< The registered graph structures.

	GraphList<EdgeElement> m_hiddenEdges; //!< The list of hidden edges.

public:
	//
	// enumerations
	//

	//! The type of edges (only used in derived classes).
	enum EdgeType {
		association = 0,
		generalization = 1,
		dependency = 2
	}; // should be more flexible, standard, dissect, expand

	//! The type of nodes.
	enum NodeType {
		vertex,
		dummy,
		generalizationMerger,
		generalizationExpander,
		highDegreeExpander,
		lowDegreeExpander,
		associationClass
	};


	//! Constructs an empty graph.
	Graph();

	//! Constructs a graph that is a copy of \a G.
	/**
	 * The constructor assures that the adjacency lists of nodes in the
	 * constructed graph are in the same order as the adjacency lists in \a G.
	 * This is in particular important when dealing with embedded graphs.
	 *
	 * @param G is the graph that will be copied.
	 */
	Graph(const Graph &G);

	//! Destructor.
	virtual ~Graph();


	/**
	 * @name Access methods
	 */
	//@{

	//! Returns true iff the graph is empty, i.e., contains no nodes.
	bool empty() const { return m_nNodes == 0; }

	//! Returns the number of nodes in the graph.
	int numberOfNodes() const { return m_nNodes; }

	//! Returns the number of edges in the graph.
	int numberOfEdges() const { return m_nEdges; }

	//! Returns the largest used node index.
	int maxNodeIndex() const { return m_nodeIdCount-1; }
	//! Returns the largest used edge index.
	int maxEdgeIndex() const { return m_edgeIdCount-1; }
	//! Returns the largest used adjEntry index.
	int maxAdjEntryIndex() const { return (m_edgeIdCount<<1)-1; }

	//! Returns the table size of node arrays associated with this graph.
	int nodeArrayTableSize() const { return m_nodeArrayTableSize; }
	//! Returns the table size of edge arrays associated with this graph.
	int edgeArrayTableSize() const { return m_edgeArrayTableSize; }
	//! Returns the table size of adjEntry arrays associated with this graph.
	int adjEntryArrayTableSize() const { return m_edgeArrayTableSize << 1; }

	//! Returns the first node in the list of all nodes.
	node firstNode() const { return m_nodes.begin (); }
	//! Returns the last node in the list of all nodes.
	node lastNode () const { return m_nodes.rbegin(); }

	//! Returns the first edge in the list of all edges.
	edge firstEdge() const { return m_edges.begin (); }
	//! Returns the last edge in the list of all edges.
	edge lastEdge () const { return m_edges.rbegin(); }

	//! Returns a randomly chosen node.
	node chooseNode() const;
	//! Returns a randomly chosen edge.
	edge chooseEdge() const;

	//! Returns a list with all nodes of the graph.
	/**
	 * @tparam NODELIST is the type of node list, which is returned.
	 * @param  nodes    is assigned the list of all nodes.
	 */
	template<class NODELIST>
	void allNodes(NODELIST &nodes) const {
		nodes.clear();
		for (node v = m_nodes.begin(); v; v = v->succ())
			nodes.pushBack(v);
	}

	//! Returns a list with all edges of the graph.
	/**
	 * @tparam EDGELIST is the type of edge list, which is returned.
	 * @param  edges    is assigned the list of all edges.
	 */
	template<class EDGELIST>
	void allEdges(EDGELIST &edges) const {
		edges.clear();
		for (edge e = m_edges.begin(); e; e = e->succ())
			edges.pushBack(e);
	}

	//! Returns a list with all edges adjacent to node \a v.
	/**
	 * @tparam EDGELIST is the type of edge list, which is returned.
	 * @param  v        is the node whose incident edges are queried.
	 * @param  edges    is assigned the list of all edges incident to \a v
	 *                  (including incoming and outcoming edges).
	 */
	template<class EDGELIST>
	void adjEdges(node v, EDGELIST &edges) const {
		edges.clear();
		edge e;
		forall_adj_edges(e,v)
			edges.pushBack(e);
	}

	//! Returns a list with all entries in the adjacency list of node \a v.
	/**
	 * @tparam ADJLIST is the type of adjacency entry list, which is returned.
	 * @param  v       is the node whose adjacency entries are queried.
	 * @param  entries is assigned the list of all adjacency entries in the adjacency list of \a v.
	 */
	template<class ADJLIST>
	void adjEntries(node v, ADJLIST &entries) const {
		entries.clear();
		adjEntry adj;
		forall_adj(adj,v)
			entries.pushBack(adj);
	}

	//! Returns a list with all incoming edges of node \a v.
	/**
	 * @tparam EDGELIST is the type of edge list, which is returned.
	 * @param  v        is the node whose incident edges are queried.
	 * @param  edges    is assigned the list of all incoming edges incident to \a v.
	 */
	template<class EDGELIST>
	void inEdges(node v, EDGELIST &edges) const {
		edges.clear();
		edge e;
		forall_adj_edges(e,v)
			if (e->target() == v) edges.pushBack(e);
	}

	//! Returns a list with all outgoing edges of node \a v.
	/**
	 * @tparam EDGELIST is the type of edge list, which is returned.
	 * @param  v        is the node whose incident edges are queried.
	 * @param  edges    is assigned the list of all outgoing edges incident to \a v.
	 */
	template<class EDGELIST>
	void outEdges(node v, EDGELIST &edges) const {
		edges.clear();
		edge e;
		forall_adj_edges(e,v)
			if (e->source() == v) edges.pushBack(e);
	}


	//@}
	/**
	 * @name Creation of new nodes and edges
	 */
	//@{

	//! Creates a new node and returns it.
	node newNode();

	//! Creates a new node with predefined index and returns it.
	/**
	 * \pre \a index is currently not the index of any other node in the graph.
	 *
	 * \attention Passing a node index that is already in use results in an inconsistent
	 *            data structure. Only use this method if you know what you're doing!
	 *
	 * @param index is the index that will be assigned to the newly created node.
	 * @return the newly created node.
	 */
	node newNode(int index);

	//! Creates a new edge (\a v,\a w) and returns it.
	/**
	 * @param v is the source node of the newly created edge.
	 * @param w is the target node of the newly created edge.
	 * @return the newly created edge.
	 */
	edge newEdge(node v, node w);

	//! Creates a new edge (\a v,\a w) with predefined index and returns it.
	/**
	 * \pre \a index is currently not the index of any other edge in the graph.
	 *
	 * \attention  Passing an edge index that is already in use results in an inconsistent
	 *             data structure. Only use this method if you know what you're doing!
	 *
	 * @param v     is the source node of the newly created edge.
	 * @param w     is the target node of the newly created edge.
	 * @param index is the index that will be assigned to the newly created edge.
	 * @return the newly created edge.
	 */
	edge newEdge(node v, node w, int index);

	//! Creates a new edge at predefined positions in the adjacency lists.
	/**
	 * Let \a v be the node whose adjacency list contains \a adjSrc,
	 * and \a w the node whose adjacency list contains \a adjTgt. Then,
	 * the created edge is (\a v,\a w).
	 *
	 * @param adjSrc is the adjacency entry after which the new edge is inserted
	 *               in the adjacency list of \a v.
	 * @param adjTgt is the adjacency entry after which the new edge is inserted
	 *               in the adjacency list of \a w.
	 * @param dir    specifies if the edge is inserted before or after the given
	 *               adjacency entries.
	 * @return the newly created edge.
	 */
	edge newEdge(adjEntry adjSrc, adjEntry adjTgt, Direction dir = ogdf::after);

	//! Creates a new edge at predefined positions in the adjacency lists.
	/**
	 * Let \a w be the node whose adjacency list contains \a adjTgt. Then,
	 * the created edge is (\a v,\a w).
	 *
	 * @param v      is the source node of the new edge; the edge is added at the end
	 *               of the adjacency list of \a v.
	 * @param adjTgt is the adjacency entry after which the new edge is inserted
	 *               in the adjacency list of \a w.
	 * @return the newly created edge.
	 */
	edge newEdge(node v, adjEntry adjTgt);

	//! Creates a new edge at predefined positions in the adjacency lists.
	/**
	 * Let \a v be the node whose adjacency list contains \a adjSrc. Then,
	 * the created edge is (\a v,\a w).
	 *
	 * @param adjSrc is the adjacency entry after which the new edge is inserted
	 *               in the adjacency list of \a v.
	 * @param w      is the source node of the new edge; the edge is added at the end
	 *               of the adjacency list of \a w.
	 * @return the newly created edge.
	 */
	edge newEdge(adjEntry adjSrc, node w);


	//@}
	/**
	 * @name Removing nodes and edges
	 */
	//@{

	//! Removes node \a v and all incident edges from the graph.
	/**
	 * @param v is the node that will be deleted.
	 */
	void delNode(node v);

	//! Removes edge \a e from the graph.
	/**
	 * @param e is the egde that will be deleted.
	 */
	void delEdge(edge e);

	//! Removes all nodes and all edges from the graph.
	void clear();


	//@}
	/**
	 * @name Hiding edges
	 * These methods are used for temporarily hiding edges. Edges are removed from the
	 * list of all edges and their corresponding adfjacency entries from the repsective
	 * adjacency lists, but the edge objects themselves are not destroyed; hiddenedges
	 * can later be reactivated with restoreEdge().
	 */
	//@{

	//! Hides the edge \a e.
	/**
	 * The edge \a e is removed from the list of all edges and adjacency lists of nodes, but
	 * not deleted; \a e can be restored by calling restoreEdge(e).
	 *
	 * \attention If an edge is hidden, its source and target node may not be deleted!
	 *
	 * @param e is the edge that will be hidden.
	 */
	void hideEdge(edge e);

	//! Restores a hidden edge \a e.
	/**
	 * \pre \a e is currently hidden and its source and target have not been removed!
	 *
	 * @param e is the hidden edge that will be restored.
	 */
	void restoreEdge(edge e);

	//! Restores all hidden edges.
	void restoreAllEdges();


	/**
	 * @name Advanced modification methods
	 */
	//@{

	//! Splits edge \a e into two edges introducing a new node.
	/**
	 * Let \a e=(\a v,\a w). Then, the resulting two edges are \a e=(\a v,\a u)
	 * and \a e'=(\a u,\a w), where \a u is a new node.
	 *
	 * \note The edge \a e is modified by this operation.
	 *
	 * @param e is the edge to be split.
	 * @return The edge \a e'.
	 */
	virtual edge split(edge e);

	//! Undoes a split operation.
	/**
	 * Removes node \a u by joining the two edges adjacent to \a u. The
	 * outgoing edge of \a u is removed and the incoming edge \a e is reused
	 *
	 * \pre \a u has exactly one incoming and one outgoing edge, and
	 *    none of them is a self-loop.
	 *
	 * @param u is the node to be unsplit.
	 * @return The edge \a e.
	 */
	void unsplit(node u);

	//! Undoes a split operation.
	/**
	 * For two edges \a eIn = (\a x,\a u) and \a eOut = (\a u,\a y), removes
	 * node \a u by joining \a eIn and \a eOut. Edge \a eOut is removed and
	 * \a eIn is reused.
	 *
	 * \pre \a eIn and \a eOut are the only edges incident with \a u and
	 *      none of them is a self-loop.
	 *
	 * @param eIn  is the (only) incoming edge of \a u.
	 * @param eOut is the (only) outgoing edge of \a u.
	 */
	virtual void unsplit(edge eIn, edge eOut);

	//! Splits a node while preserving the order of adjacency entries.
	/**
	 * This method splits a node \a v into two nodes \a vl and \a vr. Node
	 * \a vl receives all adjacent edges of \a v from \a adjStartLeft until
	 * the edge preceding \a adjStartRight, and \a vr the remaining nodes
	 * (thus \a adjStartRight is the first edge that goes to \a vr). The
	 * order of adjacency entries is preserved. Additionally, a new edge
	 * (\a vl,\a vr) is created, such that this edge is inserted before
	 * \a adjStartLeft and \a adjStartRight in the the adjacency lists of
	 * \a vl and \a vr.
	 *
	 * Node \a v is modified to become node \a vl, and node \a vr is returned.
	 * This method is useful when modifying combinatorial embeddings.
	 *
	 * @param adjStartLeft  is the first entry that goes to the left node.
	 * @param adjStartRight is the first entry that goes to the right node.
	 * @return the newly created node.
	 */
	node splitNode(adjEntry adjStartLeft, adjEntry adjStartRight);

	//! Contracts edge \a e while preserving the order of adjacency entries.
	/**
	 * @param e is the edge to be contracted.
	 * @return the endpoint of \a e to which all edges have been moved.
	 */
	node contract(edge e);

	//! Moves edge \a e to a different adjacency list.
	/**
	 * The source adjacency entry of \a e is moved to the adjacency list containing
	 * \a adjSrc and is inserted before or after \a adjSrc, and its target adjacency entry
	 * to the adjacency list containing \a adjTgt and is inserted before or after
	 * \a adjTgt; e is afterwards an edge from owner(\a adjSrc) to owner(\a adjTgt).
	 *
	 * @param e      is the edge to be moved.
	 * @param adjSrc is the adjaceny entry before or after which the source adjacency entry
	 *               of \a e will be inserted.
	 * @param dirSrc specifies if the source adjacency entry of \a e will be inserted before or after \a adjSrc.
	 * @param adjTgt is the adjaceny entry before or after which the target adjacency entry
	 *               of \a e will be inserted.
	 * @param dirTgt specifies if the target adjacency entry of \a e will be inserted before or after \a adjTgt.
	 */
	void move(edge e, adjEntry adjSrc, Direction dirSrc,
		adjEntry adjTgt, Direction dirTgt);

	//! Moves the target node of edge \a e to node \a w.
	/**
	 * If \a e=(\a v,\a u) before, then \a e=(\a v,\a w) afterwards.
	 *
	 * @param e is the edge whose target node is moved.
	 * @param w is the new target node of \a e.
	 */
	void moveTarget(edge e, node w);

	//! Moves the target node of edge \a e to a specific position in an adjacency list.
	/**
	 * Let \a w be the node containing \a adjTgt. If \a e=(\a v,\a u) before, then \a e=(\a v,\a w) afterwards.
	 * Inserts the adjacency entry before or after \a adjTgt according to \a dir.
	 *
	 * @param e is the edge whose target node is moved.
	 * @param adjTgt is the adjacency entry before or after which the target adjacency entry of \a e is inserted.
	 * @param dir specifies if the target adjacency entry of \a e is inserted before or after \a adjTgt.
	 */
	void moveTarget(edge e, adjEntry adjTgt, Direction dir);

	//! Moves the source node of edge \a e to node \a w.
	/**
	 * If \a e=(\a v,\a u) before, then \a e=(\a w,\a u) afterwards.
	 *
	 * @param e is the edge whose source node is moved.
	 * @param w is the new source node of \a e.
	 */
	void moveSource(edge e, node w);

	//! Moves the source node of edge \a e to a specific position in an adjacency list.
	/**
	 * Let \a w be the node containing \a adjSrc. If \a e=(\a v,\a u) before, then \a e=(\a w,\a u) afterwards.
	 * Inserts the adjacency entry before or after \a adjSrc according to \a dir.
	 *
	 * @param e is the edge whose source node is moved.
	 * @param adjSrc is the adjacency entry before or after which the source adjacency entry of \a e is inserted.
	 * @param dir specifies if the source adjacency entry of \a e is inserted before or after \a adjSrc.
	 */
	void moveSource(edge e, adjEntry adjSrc, Direction dir);

	//! Searches and returns an edge connecting nodes \a v and \a w.
	/**
	 * @param v is the source node of the edge to be searched.
	 * @param w is the target node of the edge to be searched.
	 * @return an edge (\ v,\a w) if such an edge exists, 0 otherwise.
	 */
	edge searchEdge (node v, node w) const;

	//! Reverses the edge \a e, i.e., exchanges source and target node.
	/**
	 * @param e is the edge to be reveresed.
	 */
	void reverseEdge(edge e);

	//! Reverses all edges in the graph.
	void reverseAllEdges();

	//! Collapses all nodes in the list \a nodes to the first node in the list.
	/**
	 * Parallel edges are removed.
	 *
	 * @tparam NODELIST is the type of input node list.
	 * @param  nodes    is the list of nodes that will be collapsed. This list will be empty after the call.
	 */
	template<class NODELIST>
	void collaps(NODELIST &nodes){
		node v = nodes.popFrontRet();
		while (!nodes.empty())
		{
			node w = nodes.popFrontRet();
			adjEntry adj = w->firstAdj();
			while (adj !=0)
			{
				adjEntry succ = adj->succ();
				edge e = adj->theEdge();
				if (e->source() == v || e->target() == v)
					delEdge(e);
				else if (e->source() == w)
					moveSource(e,v);
				else
					moveTarget(e,v);
				adj = succ;
			}
			delNode(w);
		}
	}

	//! Sorts the adjacency list of node \a v according to \a newOrder.
	/**
	 * \pre \a newOrder contains exactly the adjacency entries of \a v!
	 *
	 * @tparam ADJ_ENTRY_LIST is the type of the input adjacency entry list.
	 * @param  v              is the node whose adjacency list will be sorted.
	 * @param  newOrder       is the list of adjacency entries of \a v in the new order.
	 */
	template<class ADJ_ENTRY_LIST>
	void sort(node v, const ADJ_ENTRY_LIST &newOrder) {
#ifdef OGDF_DEBUG
		typename ADJ_ENTRY_LIST::const_iterator it;
		for(it = newOrder.begin(); it.valid() ; ++it) {
			OGDF_ASSERT((*it)->theNode() == v);
		}
#endif
		v->m_adjEdges.sort(newOrder);
	}

	//! Reverses the adjacency list of \a v.
	/**
	 * @param v is the node whose adjacency list will be reveresed.
	 */
	void reverseAdjEdges(node v) {
		v->m_adjEdges.reverse();
	}

	//! Moves adjacency entry \a adjMove before or after \a adjPos.
	/**
	 * \pre \a adjMove and adjAfter are distinct entries in the same adjacency list.
	 *
	 * @param adjMove is an entry in the adjacency list of a node in this graph.
	 * @param adjPos  is an entry in the same adjacency list as \a adjMove.
	 * @param dir     specifies if \a adjMove is moved before or after \a adjPos.
	 */
	void moveAdj(adjEntry adjMove, Direction dir, adjEntry adjPos) {
		OGDF_ASSERT(adjMove->graphOf() == this && adjPos->graphOf() == this);
		OGDF_ASSERT(adjMove != 0 && adjPos != 0);
		GraphList<AdjElement> &adjList = adjMove->m_node->m_adjEdges;
		adjList.move(adjMove, adjList, adjPos, dir);
	}

	//! Moves adjacency entry \a adjMove after \a adjAfter.
	/**
	 * \pre \a adjMove and \a adjAfter are distinct entries in the same adjacency list.
	 *
	 * @param adjMove  is an entry in the adjacency list of a node in this graph.
	 * @param adjAfter is an entry in the same adjacency list as \a adjMove.
	 */
	void moveAdjAfter(adjEntry adjMove, adjEntry adjAfter) {
		OGDF_ASSERT(adjMove->graphOf() == this && adjAfter->graphOf() == this);
		OGDF_ASSERT(adjMove != 0 && adjAfter != 0);
		adjMove->m_node->m_adjEdges.moveAfter(adjMove,adjAfter);
	}

	//! Moves adjacency entry \a adjMove before \a adjBefore.
	/**
	 * \pre \a adjMove and \a adjBefore are distinct entries in the same adjacency list.
	 *
	 * @param adjMove   is an entry in the adjacency list of a node in this graph.
	 * @param adjBefore is an entry in the same adjacency list as \a adjMove.
	 */
	void moveAdjBefore(adjEntry adjMove, adjEntry adjBefore) {
		OGDF_ASSERT(adjMove->graphOf() == this && adjBefore->graphOf() == this);
		OGDF_ASSERT(adjMove != 0 && adjBefore != 0);
		adjMove->m_node->m_adjEdges.moveBefore(adjMove,adjBefore);
	}

	//! Reverses all adjacency lists.
	void reverseAdjEdges();

	//! Exchanges two entries in an adjacency list.
	/**
	 * \pre \a adj1 and \a adj2 must be belong to the same adjacency list.
	 *
	 * @param adj1 the first adjacency entry to be swapped.
	 * @param adj2 the secomd adjacency entry to be swapped.
	 */
	void swapAdjEdges(adjEntry adj1, adjEntry adj2) {
		OGDF_ASSERT(adj1->theNode() == adj2->theNode());
		OGDF_ASSERT(adj1->graphOf() == this);

		adj1->theNode()->m_adjEdges.swap(adj1,adj2);
	}


	//@}
	/**
	 * @name Input and output
	 */
	//@{

	//! Reads a graph in GML format from file \a fileName.
	/**
	 * @param fileName is the name of the input file.
	 * @return true if successful, false otherwise.
	 */
	bool readGML(const char *fileName);

	//! Reads a graph in GML format from input stream \a is.
	/**
	 * @param is is the input file stream.
	 * @return true if successful, false otherwise.
	 */
	bool readGML(istream &is);

	//! Writes the graph in GML format to file \a fileName.
	/**
	 * @param fileName is the name of the output file.
	 */
	void writeGML(const char *fileName) const;

	//! Writes the graph in GML format to output stream \a os.
	/**
	 * @param os is the output file stream.
	 * @return true if successful, false otherwise.
	 */
	void writeGML(ostream &os) const;

	//! Reads a graph in LEDA format from file \a fileName.
	/**
	 * @param fileName is the name of the input file.
	 * @return true if successful, false otherwise.
	 */
	bool readLEDAGraph(const char *fileName);

	//! Read a graph in LEDA format from input stream \a is.
	/**
	 * @param is is the input file stream.
	 * @return true if successful, false otherwise.
	 */
	bool readLEDAGraph(istream &is);


	//@}
	/**
	 * @name Miscellaneous
	 */
	//@{

	//! Returns the genus of the graph's embedding.
	/**
	 * The genus of a graph is defined as follows. Let \f$G\f$ be a graph
	 * with \f$m\f$ edges, \f$n\f$ nodes, \f$c\f$ connected components, \f$nz\f$
	 * isolated vertices, and \f$fc\f$ face cycles. Then,
	 * \f[
	 *   genus(G) = (m/2 + 2c - n -nz -fc)/2
	 * \f]
	 *
	 * @return the genus of the graph's current embedding; if this is 0, then the graph is planarly embedded.
	 */
	int genus() const;

	//! Returns true iff the graph represents a combinatorial embedding.
	/**
	 * @return true if the current embedding (given by the adjacency lists) represents a combinatorial embedding, false otherwise.
	 */
	bool representsCombEmbedding() const {
		return (genus() == 0);
	}

	//! Checks the consistency of the data structure.
	/**
	 * \remark This method is meant for debugging purposes only.
	 *
	 * @return true if everything is ok, false if the data structure is inconsistent.
	 */
	bool consistencyCheck() const;


	//@}
	/**
	 * @name Registering arrays and observers
	 * These methods are used by various graph array types like NodeArray or EdgeArray.
	 * There should be no need to use them directly in user code.
	 */
	//@{

	//! Registers a node array.
	/**
	 * \remark This method is automatically called by node arrays; it should not be called manually.
	 *
	 * @param pNodeArray is a pointer to the node array's base; this node array must be associated with this graph.
	 * @return an iterator pointing to the entry for the registered node array in the list of registered node arrays.
	 *         This iterator is required for unregistering the node array again.
	 */
	ListIterator<NodeArrayBase*> registerArray(NodeArrayBase *pNodeArray) const;

	//! Registers an edge array.
	/**
	 * \remark This method is automatically called by edge arrays; it should not be called manually.
	 *
	 * @param pEdgeArray is a pointer to the edge array's base; this edge array must be associated with this graph.
	 * @return an iterator pointing to the entry for the registered edge array in the list of registered edge arrays.
	 *         This iterator is required for unregistering the edge array again.
	 */
	ListIterator<EdgeArrayBase*> registerArray(EdgeArrayBase *pEdgeArray) const;

	//! Registers an adjEntry array.
	/**
	 * \remark This method is automatically called by adjacency entry arrays; it should not be called manually.
	 *
	 * @param pAdjArray is a pointer to the adjacency entry array's base; this adjacency entry array must be
	 *                  associated with this graph.
	 * @return an iterator pointing to the entry for the registered adjacency entry array in the list of registered
	 *         adjacency entry arrays. This iterator is required for unregistering the adjacency entry array again.
	 */
	ListIterator<AdjEntryArrayBase*> registerArray(AdjEntryArrayBase *pAdjArray) const;

	//! Registers a graph observer (e.g. a ClusterGraph).
	/**
	 * @param pStructure is a pointer to the graph observer that shall be registered; this graph observer must be
	 *                   associated with this graph.
	 * @return an iterator pointing to the entry for the registered graph observer in the list of registered
	 *         graph observers. This iterator is required for unregistering the graph observer again.
	 */
	ListIterator<GraphObserver*> registerStructure(GraphObserver *pStructure) const;

	//! Unregisters a node array.
	/**
	 * @param it is an iterator pointing to the entry in the list of registered node arrays for the node array to
	 *        be unregistered.
	 */
	void unregisterArray(ListIterator<NodeArrayBase*> it) const;

	//! Unregisters an edge array.
	/**
	 * @param it is an iterator pointing to the entry in the list of registered edge arrays for the edge array to
	 *        be unregistered.
	 */
	void unregisterArray(ListIterator<EdgeArrayBase*> it) const;

	//! unregisters an adjEntry array.
	/**
	 * @param it is an iterator pointing to the entry in the list of registered adjacency entry arrays for the
	 *           adjacency entry array to be unregistered.
	 */
	void unregisterArray(ListIterator<AdjEntryArrayBase*> it) const;

	//! Unregisters a graph observer.
	/**
	 * @param it is an iterator pointing to the entry in the list of registered graph observers for the graph
	 *           observer to be unregistered.
	 */
	void unregisterStructure(ListIterator<GraphObserver*> it) const;


	//! Resets the edge id count to \a maxId.
	/**
	 * The next edge will get edge id \a maxId+1. Use this function with caution!
	 * It is provided as an efficient way to reduce the edge id count. The Graph class
	 * increments the edge id count whenever an edge is created; free edge ids resulting
	 * from removing edges are not reused (there is not something like a freelist).
	 *
	 * This function is , e.g., useful, when a lot of edges has been added and
	 * <em>all</em> these edges are removed again (without creating other new edges
	 * meanwile). Then, it is safe to reduce the edge id count to the value it had
	 * before, cf. the following code snippet:
	 * \code
	 *   int oldIdCount = G.maxEdgeIndex();
	 *   Create some edges
	 *   ...
	 *   Remove all these edges again
	 *   G.resetEdgeIdCount(oldIdCount);
	 * \endcode
	 *
	 * Reducing the edge id count will reduce the memory consumption of edge arrays
	 * associated with the graph.
	 *
	 * \pre -1 \f$\leq\f$ \a maxId \f$\leq\f$ maximal edge id in the graph.
	 *
	 * @param maxId is an upper bound of the edge ids in the graph.
	 */
	void resetEdgeIdCount(int maxId);


	//@}
	/**
	 * @name Operators
	 */
	//@{
	//! Assignment operator.
	/**
	 * The assignment operature assures that the adjacency lists of nodes in the
	 * constructed graph are in the same order as the adjacency lists in \a G.
	 * This is in particular important when dealing with embedded graphs.
	 *
	 * @param G is the graph to be copied.
	 * @return this graph.
	 */
	Graph &operator=(const Graph &G);

	OGDF_MALLOC_NEW_DELETE

	//@}

public:

	//! Returns the smallest power of 2 which is >= 2^\a start and > \a idCount.
	static int nextPower2(int start, int idCount);


protected:
	void construct(const Graph &G, NodeArray<node> &mapNode,
		EdgeArray<edge> &mapEdge);

	void assign(const Graph &G, NodeArray<node> &mapNode,
		EdgeArray<edge> &mapEdge);

	//! Constructs a copy of the subgraph of \a G induced by \a nodes.
	/**
	 * This method preserves the order in the adjacency lists, i.e., if
	 * \a G is embedded, its embedding induces the embedding of the copy.
	 */
	void constructInitByNodes(
		const Graph &G,
		const List<node> &nodes,
		NodeArray<node> &mapNode,
		EdgeArray<edge> &mapEdge);

	void constructInitByActiveNodes(
		const List<node> &nodes,
		const NodeArray<bool> &activeNodes,
		NodeArray<node> &mapNode,
		EdgeArray<edge> &mapEdge);

private:
	void copy(const Graph &G, NodeArray<node> &mapNode,
		EdgeArray<edge> &mapEdge);
	void copy(const Graph &G);

	edge createEdgeElement(node v, node w, adjEntry adjSrc, adjEntry adjTgt);
	node pureNewNode();

	// moves adjacency entry to node w
	void moveAdj(adjEntry adj, node w);

	void reinitArrays();
	void reinitStructures();
	void resetAdjEntryIndex(int newIndex, int oldIndex);

	bool readToEndOfLine(istream &is);
}; // class Graph



//! Bucket function using the index of an edge's source node as bucket.
class OGDF_EXPORT BucketSourceIndex : public BucketFunc<edge> {
public:
	//! Returns source index of \a e.
	int getBucket(const edge &e) { return e->source()->index(); }
};

//! Bucket function using the index of an edge's target node as bucket.
class OGDF_EXPORT BucketTargetIndex : public BucketFunc<edge> {
public:
	//! Returns target index of \a e.
	int getBucket(const edge &e) { return e->target()->index(); }
};


} //namespace

#endif