File: Math.h

package info (click to toggle)
bandage 0.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 15,684 kB
  • sloc: cpp: 45,359; sh: 491; makefile: 12
file content (150 lines) | stat: -rw-r--r-- 3,321 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
 * $Revision: 2523 $
 *
 * last checkin:
 *   $Author: gutwenger $
 *   $Date: 2012-07-02 20:59:27 +0200 (Mon, 02 Jul 2012) $
 ***************************************************************/

/** \file
 * \brief Mathematical Helpers
 *
 * \author Markus Chimani
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/




#ifndef OGDF_MATH_H
#define OGDF_MATH_H

#include "basic.h"
#include <math.h>

namespace ogdf {


//#define DOUBLE_EPS 0.000001


class OGDF_EXPORT Math {

public:
	//! The constant \f$\pi\f$.
	static const double pi;

	//! The constant \f$\frac{\pi}{2}\f$.
	static const double pi_2;

	//! The constant \f$\frac{\pi}{4}\f$.
	static const double pi_4;

	//! The constant \f$2\pi\f$.
	static const double two_pi;

	//! Euler's number.
	static const double e;

	//! The constant log(2.0).
	static const double log_of_2;

	//! The constant log(4.0).
	static const double log_of_4;

	//! Returns the logarithm of \a x to the base 2.
	static double log2(double x) {
		OGDF_ASSERT(x >= 0)
		return log(x) / log_of_2;
	}

	//! Returns the logarithm of \a x to the base 4.
	static double log4(double x) {
		OGDF_ASSERT(x >= 0)
		return log(x) / log_of_4;
	}

	//! Returns \f$n \choose k\f$.
	static int binomial(int n, int k);

	//! Returns \f$n \choose k\f$.
	static double binomial_d(int n, int k);

	//! Returns \a n!.
	static int factorial(int n);

	//! Returns \a n!.
	static double factorial_d(int n);

	//static bool equald(double a, double b) {
	//	double d = a-b;
	//	return d < DOUBLE_EPS && d > -DOUBLE_EPS;
	//}

	/*!
	 * \brief A fast method to obtain the rounded down binary logarithm of an 32-bit integer
	 *
	 * This is based on http://en.wikipedia.org/wiki/Binary_logarithm
	 * @param v The number of which the binary logarithm is to be determined
	 * @return The rounded down logarithm base 2 if v is positive, -1 otherwise
	 */
	static int floorLog2(int v) {
		if (v <= 0) {
			return -1;
		} else {
			int result = 0;
			if (v >= (1 << 16)) {
				v >>= 16;
				result += 16;
			}
			if (v >= (1 << 8)) {
				v >>= 8;
				result += 8;
			}
			if (v >= (1 << 4)) {
				v >>= 4;
				result += 4;
			}
			if (v >= (1 << 2)) {
				v >>= 2;
				result += 2;
			}
			if (v >= (1 << 1)) {
				result += 1;
			}
			return result;
		}
	}
};


}

#endif // OGDF_MATH_H