1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*
* $Revision: 2523 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-02 20:59:27 +0200 (Mon, 02 Jul 2012) $
***************************************************************/
/** \file
* \brief Mathematical Helpers
*
* \author Markus Chimani
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifndef OGDF_MATH_H
#define OGDF_MATH_H
#include "basic.h"
#include <math.h>
namespace ogdf {
//#define DOUBLE_EPS 0.000001
class OGDF_EXPORT Math {
public:
//! The constant \f$\pi\f$.
static const double pi;
//! The constant \f$\frac{\pi}{2}\f$.
static const double pi_2;
//! The constant \f$\frac{\pi}{4}\f$.
static const double pi_4;
//! The constant \f$2\pi\f$.
static const double two_pi;
//! Euler's number.
static const double e;
//! The constant log(2.0).
static const double log_of_2;
//! The constant log(4.0).
static const double log_of_4;
//! Returns the logarithm of \a x to the base 2.
static double log2(double x) {
OGDF_ASSERT(x >= 0)
return log(x) / log_of_2;
}
//! Returns the logarithm of \a x to the base 4.
static double log4(double x) {
OGDF_ASSERT(x >= 0)
return log(x) / log_of_4;
}
//! Returns \f$n \choose k\f$.
static int binomial(int n, int k);
//! Returns \f$n \choose k\f$.
static double binomial_d(int n, int k);
//! Returns \a n!.
static int factorial(int n);
//! Returns \a n!.
static double factorial_d(int n);
//static bool equald(double a, double b) {
// double d = a-b;
// return d < DOUBLE_EPS && d > -DOUBLE_EPS;
//}
/*!
* \brief A fast method to obtain the rounded down binary logarithm of an 32-bit integer
*
* This is based on http://en.wikipedia.org/wiki/Binary_logarithm
* @param v The number of which the binary logarithm is to be determined
* @return The rounded down logarithm base 2 if v is positive, -1 otherwise
*/
static int floorLog2(int v) {
if (v <= 0) {
return -1;
} else {
int result = 0;
if (v >= (1 << 16)) {
v >>= 16;
result += 16;
}
if (v >= (1 << 8)) {
v >>= 8;
result += 8;
}
if (v >= (1 << 4)) {
v >>= 4;
result += 4;
}
if (v >= (1 << 2)) {
v >>= 2;
result += 2;
}
if (v >= (1 << 1)) {
result += 1;
}
return result;
}
}
};
}
#endif // OGDF_MATH_H
|