1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
|
/*
* $Revision: 2564 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-07 00:03:48 +0200 (Sa, 07. Jul 2012) $
***************************************************************/
/** \file
* \brief Declaration of classes DPoint, DPolyline, DLine, DRect, DScaler.
*
* \author Joachim Kupke
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_GEOMETRY_H
#define OGDF_GEOMETRY_H
#include "List.h"
#include "Hashing.h"
#include <float.h>
#include <math.h>
#define OGDF_GEOM_EPS 1e-06
namespace ogdf {
//! Determines the orientation in hierarchical layouts.
enum Orientation {
topToBottom, //!< Edges are oriented from top to bottom.
bottomToTop, //!< Edges are oriented from bottom to top.
leftToRight, //!< Edges are oriented from left to right.
rightToLeft //!< Edges are oriented from right to left.
};
// Important: be careful, if compared values are (+/-)DBL_MAX !!!
inline
bool DIsEqual(const double &a, const double &b, const double eps = OGDF_GEOM_EPS)
{
return (a < (b + eps) && a > (b - eps));
}
inline
bool DIsGreaterEqual(const double &a, const double &b, const double eps = OGDF_GEOM_EPS)
{
return (a > (b - eps));
}
inline
bool DIsGreater(const double &a, const double &b, const double eps = OGDF_GEOM_EPS)
{
return (a > (b + eps));
}
inline
bool DIsLessEqual(const double &a, const double &b, const double eps = OGDF_GEOM_EPS)
{
return (a < (b + eps));
}
inline
bool DIsLess(const double &a, const double &b, const double eps = OGDF_GEOM_EPS)
{
return (a < (b - eps));
}
inline
double DRound(const double &d, int prec = 0)
{
if (prec == 0)
return floor(d + 0.5);
double factor = pow(10.0, ((double) prec));
return DRound(d * factor, 0) / factor;
}
/**
* \brief Parameterized base class for points.
*
* This class serves as base class for two-dimensional points with specific
* coordinate types like integer points (IPoint) and real points (DPoint).
* The template parameter NUMBER is the type for the coordinates of the point
* and has to support assignment and equality/inequality operators.
*/
template <class NUMBER>
class GenericPoint
{
public:
//! The type for coordinates of the point.
typedef NUMBER numberType;
NUMBER m_x; //!< The x-coordinate.
NUMBER m_y; //!< The y-coordinate.
//! Creates a generic point.
/**
* \warning Does not assign something like zero to the coordinates,
* since we do not require that 0 can be casted to a NUMBER.
*/
GenericPoint() { }
//! Creates a generic point (\a x,\a y).
GenericPoint(NUMBER x, NUMBER y) : m_x(x), m_y(y) { }
//! Copy constructor.
GenericPoint(const GenericPoint &ip) : m_x(ip.m_x), m_y(ip.m_y) { }
//! Assignment operator.
GenericPoint operator=(const GenericPoint &ip) {
m_x = ip.m_x;
m_y = ip.m_y;
return *this;
}
//! Equality operator.
bool operator==(const GenericPoint &ip) const {
return m_x == ip.m_x && m_y == ip.m_y;
}
//! Inequality operator.
bool operator!=(const GenericPoint &ip) const {
return m_x != ip.m_x || m_y != ip.m_y;
}
};//class GenericPoint
/**
* \brief Integer points.
*
* This class represent a two-dimensional point with integer coordinates.
*/
class OGDF_EXPORT IPoint : public GenericPoint<int>
{
public:
//! Creates an integer point (0,0).
IPoint() : GenericPoint<int>(0,0) { }
//! Creates an integer point (\a x,\a y).
IPoint(int x, int y) : GenericPoint<int>(x,y) { }
//! Copy constructor.
IPoint(const IPoint &ip) : GenericPoint<int>(ip) { }
//! Returns the euclidean distance between \a p and this point.
double distance(const IPoint &p) const;
};//class IPoint
//! Output operator for integer points.
OGDF_EXPORT ostream &operator<<(ostream &os, const IPoint &ip);
template<> class DefHashFunc<IPoint>
{
public:
int hash(const IPoint &ip) const {
return 7*ip.m_x + 23*ip.m_y;
}
};
/**
* \brief Polylines with integer coordinates.
*
* This class represents integer polylines by a list of integer points.
* Such polylines are, e.g., used in layouts for representing bend
* point lists. Note that in this case, only the bend points are in the
* list and neither the start nor the end point.
*/
class OGDF_EXPORT IPolyline : public List<IPoint> {
public:
//! Creates an empty integer polyline.
IPolyline() { }
//! Copy constructor.
IPolyline(const IPolyline &ipl) : List<IPoint>(ipl) { }
//! Assignment operator.
IPolyline &operator=(const IPolyline &ipl) {
List<IPoint>::operator =(ipl);
return *this;
}
//! Returns the euclidean length of the polyline.
double length() const;
};
/**
* \brief Real points.
*
* This class represent a two-dimensional point with real coordinates.
*/
class OGDF_EXPORT DPoint : public GenericPoint<double>
{
public:
//! Creates a real point (0,0).
DPoint() : GenericPoint<double>(0,0) { }
//! Creates a real point (\a x,\a y).
DPoint(double x, double y) : GenericPoint<double>(x,y) { }
//! Copy constructor.
DPoint(const DPoint &dp) : GenericPoint<double>(dp) { }
//! Relaxed equality operator.
bool operator==(const DPoint &dp) const {
return DIsEqual(m_x, dp.m_x) && DIsEqual(m_y,dp.m_y);
}
//! Returns the norm of the point.
double norm() const {
return sqrt(m_x*m_x + m_y*m_y);
}
//! Addition of real points.
DPoint operator+(const DPoint &p) const;
//! Subtraction of real points.
DPoint operator-(const DPoint &p) const;
//! Returns the euclidean distance between \a p and this point.
double distance(const DPoint &p) const;
};
//! Output operator for real points.
OGDF_EXPORT ostream &operator<<(ostream &os, const DPoint &dp);
/**
* \brief Vectors with real coordinates.
*/
class OGDF_EXPORT DVector : public DPoint {
public:
//! Creates a vector (0,0).
DVector() : DPoint() { }
//! Creates a vector (\a x,\a y).
DVector(double x, double y) : DPoint(x, y) { }
//! Copy constructor.
DVector(const DVector &dv) : DPoint(dv) { }
//! Assignment operator.
DVector operator=(const DPoint &ip) {
if (this != &ip)
{
m_x = ip.m_x;
m_y = ip.m_y;
}
return *this;
}
//! Multiplies all coordinates with \a val.
DVector operator*(const double val) const;
//! Divides all coordinates by \a val.
DVector operator/(const double val) const;
//! Returns the length of the vector.
double length() const;
//! Returns the determinante of the vector.
double operator^(const DVector &dv) const;
//! Returns the scalar product of this vecor and \a dv.
double operator*(const DVector &dv) const;
/**
* \brief Returns a vector that is orthogonal to this vector.
*
* Returns the vector \f$(y/x,1)\f$ if \f$x\neq 0\f$, or \f$(1,0)\f$
* otherwise, where \f$(x,y)\f$ is this vector.
*/
DVector operator++() const;
/**
* \brief Returns a vector that is orthogonal to this vector.
*
* Returns the vector \f$(-y/x,-1)\f$ if \f$x\neq 0\f$, or \f$(-1,0)\f$
* otherwise, where \f$(x,y)\f$ is this vector.
*/
DVector operator--() const;
};
/**
* \brief Polylines with real coordinates.
*
* This class represents real polylines by a list of real points.
* Such polylines are, e.g., used in layouts for representing bend
* point lists.
*/
class OGDF_EXPORT DPolyline : public List<DPoint> {
static const double s_prec; //!< The conversion-precision.
public:
//! Creates an empty integer polyline.
DPolyline() { }
//! Copy constructor.
DPolyline(const DPolyline &dpl) : List<DPoint>(dpl) { }
//! Assignment operator.
DPolyline &operator=(const DPolyline &dpl) {
List<DPoint>::operator =(dpl);
return *this;
}
//! Returns the euclidean length of the polyline.
double length() const;
/**
* \brief Returns a point on the polyline which is \a fraction * \a len
* away from the start point.
*
* @param fraction defines the fraction of \a lento be considered.
* @param len is the given length, or the length of the polyline if \a len < 0.
*/
DPoint position(const double fraction, double len = -1.0) const;
//! Writes the polyline as graph in gml-format to file \a filename.
void writeGML(const char* filename) const;
//! Writes the polyline as graph in gml-format to output stream \a stream.
void writeGML(ostream &stream) const;
//! Deletes all successive points with equal coordinates.
void unify();
//! Deletes all redundant points on the polyline that lie on a straight line given by their adajcent points.
void normalize();
//! Deletes all redundant points on the polyline that lie on a straight line given by their adajcent points.
void normalize(DPoint src, //start point of the edge
DPoint tgt); //end point of the edge
//! Converts all coordinates rounded to \a s_prec decimal digits.
void convertToInt();
//void reConvertToDouble();
};
/**
* \brief Lines with real coordinates.
*/
class OGDF_EXPORT DLine {
protected:
DPoint m_start; //!< The start point of the line.
DPoint m_end; //!< The end point of the line.
public:
//! Creates an empty line.
DLine() : m_start(), m_end() {}
//! Creates a line with start point \a p1 and end point \a p2.
DLine(const DPoint &p1, const DPoint &p2) : m_start(p1), m_end(p2) {}
//! Copy constructor.
DLine(const DLine &dl) : m_start(dl.m_start), m_end(dl.m_end) {}
//! Creates a line with start point (\a x1,\a y1) and end point (\a x2,\a y2).
DLine(double x1, double y1, double x2, double y2) {
m_start.m_x = x1; m_start.m_y = y1; m_end.m_x = x2; m_end.m_y = y2;
}
//! Equality operator.
bool operator==(const DLine &dl) const {
return m_start == dl.m_start && m_end == dl.m_end;
}
//! Inequality operator.
bool operator!=(const DLine &dl) const {
return !(*this == dl);
}
//! Assignment operator.
DLine &operator= (const DLine &dl) {
if (this != &dl) { // don't assign myself
m_start = dl.m_start;
m_end = dl.m_end;
}
return *this;
}
//! Returns the start point of the line.
const DPoint &start() const { return m_start; }
//! Returns the end point of the line.
const DPoint &end() const { return m_end; }
//! Returns the x-coordinate of the difference (end point - start point).
double dx() const { return m_end.m_x - m_start.m_x; }
//! Returns the y-coordinate of the difference (end point - start point).
double dy() const { return m_end.m_y - m_start.m_y; }
//! Returns the slope of the line.
double slope() const { return (dx() == 0) ? DBL_MAX : dy()/dx(); }
//! Returns the value y' such that (0,y') lies on the unlimited straight-line define dby this line.
double yAbs() const { return (dx() == 0) ? DBL_MAX : m_start.m_y - (slope() * m_start.m_x); }
//! Returns true iff this line runs vertically.
bool isVertical() const { return (DIsEqual(dx(), 0.0)); }
//! Returns true iff this line runs horizontally.
bool isHorizontal() const { return (DIsEqual(dy(), 0.0)); }
/**
* \brief Returns true iff \a line and this line intersect.
*
* @param line is the second line.
* @param inter is assigned the intersection point if true is returned.
* @param endpoints determines if common endpoints are treated as intersection.
*/
bool intersection(const DLine &line, DPoint &inter, bool endpoints = true) const;
//! Returns true iff \a p lie on this line.
bool contains(const DPoint &p) const;
//! Returns the length (euclidean distance between start and edn point) of this line.
double length() const {
return m_start.distance(m_end);
}
/**
* \brief Computes the intersection between this line and the horizontal line through y = \a horAxis.
*
* @param horAxis defines the horizontal line.
* @param crossing is assigned the x-coordinate of the intersection point.
*
* \return the number of intersection points (0 = none, 1 = one, 2 = this
* line lies on the horizontal line through y = \a horAxis).
*/
int horIntersection(const double horAxis, double &crossing) const;
// gives the intersection with the vertical axis 'verAxis', returns the number of intersections
// 0 = no, 1 = one, 2 = infinity or both end-points, e.g. parallel on this axis
/**
* \brief Computes the intersection between this line and the vertical line through x = \a verAxis.
*
* @param verAxis defines the vertical line.
* @param crossing is assigned the y-coordinate of the intersection point.
*
* \return the number of intersection points (0 = none, 1 = one, 2 = this
* line lies on the vertical line through x = \a verAxis).
*/
int verIntersection(const double verAxis, double &crossing) const;
};
//! Output operator for lines.
ostream &operator<<(ostream &os, const DLine &dl);
/**
* \brief Rectangles with real coordinates.
*/
class OGDF_EXPORT DRect {
private:
DPoint m_p1; //!< The lower left point of the rectangle.
DPoint m_p2; //!< The upper right point of the rectangle.
public:
//! Creates a rectangle with lower left and upper right point (0,0).
DRect() : m_p1(), m_p2() {}
//! Creates a rectangle with lower left point \a p1 and upper right point \a p2.
DRect(const DPoint &p1, const DPoint &p2) : m_p1(p1), m_p2(p2)
{ normalize(); }
//! Creates a rectangle with lower left point (\a x1,\a y1) and upper right point (\a x1,\a y2).
DRect(double x1, double y1, double x2, double y2) {
m_p1.m_x = x1; m_p1.m_y = y1; m_p2.m_x = x2; m_p2.m_y = y2;
normalize();
}
//! Creates a rectangle defined by the end points of line \a dl.
DRect(const DLine &dl) : m_p1(dl.start()), m_p2(dl.end())
{ normalize(); }
//! Copy constructor.
DRect(const DRect &dr) : m_p1(dr.m_p1), m_p2(dr.m_p2)
{ normalize(); }
//! Equality operator.
bool operator==(const DRect &dr) const {
return m_p1 == dr.m_p1 && m_p2 == dr.m_p2;
}
//! Inequality operator.
bool operator!=(const DRect &dr) const {
return !(*this == dr);
}
//! Assignment operator.
DRect &operator= (const DRect &dr) {
if (this != &dr) { // don't assign myself
m_p1 = dr.m_p1;
m_p2 = dr.m_p2;
}
return *this;
}
//! Returns the width of the rectangle.
double width() const {
return m_p2.m_x - m_p1.m_x;
}
//! Returns the height of the rectangle.
double height() const {
return m_p2.m_y - m_p1.m_y;
}
/**
* \brief Normalizes the rectangle.
*
* Makes sure that the lower left point lies below and left of the upper
* right point.
*/
void normalize() {
if (width() < 0) swap(m_p2.m_x, m_p1.m_x);
if (height() < 0) swap(m_p2.m_y, m_p1.m_y);
}
//! Returns the lower left point of the rectangle.
const DPoint &p1() const { return m_p1; }
//! Returns the upper right point of the rectangle.
const DPoint &p2() const { return m_p2; }
//! Returns the top side of the rectangle.
const DLine topLine() const {
return DLine( DPoint(m_p1.m_x, m_p2.m_y), DPoint(m_p2.m_x, m_p2.m_y));
}
//! Returns the right side of the rectangle.
const DLine rightLine() const {
return DLine( DPoint(m_p2.m_x, m_p2.m_y), DPoint(m_p2.m_x, m_p1.m_y));
}
//! Returns the left side of the rectangle.
const DLine leftLine() const {
return DLine( DPoint(m_p1.m_x, m_p1.m_y), DPoint(m_p1.m_x, m_p2.m_y));
}
//! Returns the bottom side of the rectangle.
const DLine bottomLine() const {
return DLine( DPoint(m_p2.m_x, m_p1.m_y), DPoint(m_p1.m_x, m_p1.m_y));
}
//! Swaps the y-coordinates of the two points.
void yInvert() { swap(m_p1.m_y, m_p2.m_y); }
//! Swaps the x-coordinates of the two points.
void xInvert() { swap(m_p1.m_x, m_p2.m_x); }
//! Returns true iff \a p lies within this rectangle.
bool contains(const DPoint &p) const {
if (DIsLess (p.m_x, m_p1.m_x) ||
DIsGreater(p.m_x, m_p2.m_x) ||
DIsLess (p.m_y, m_p1.m_y) ||
DIsGreater(p.m_y, m_p2.m_y))
return false;
return true;
}
};
//! Output operator for rectangles.
OGDF_EXPORT ostream &operator<<(ostream &os, const DRect &dr);
/**
* \brief Scaling between coordinate systems.
*/
class OGDF_EXPORT DScaler {
private:
const DRect *m_from; //!< Rectangluar area in source coordinate system.
const DRect *m_to; //!< Rectangluar area in target coordinate system.
double m_factorX; //!< The scaling factor for the x-coordinates.
double m_factorY; //!< The scaling factor for the y-coordinates.
double m_offsetX; //!< The offset for the x-coordinates.
double m_offsetY; //!< The offset for the y-coordinates.
public:
//! Creates a scaler for scaling from area \a from to area \a to.
DScaler(const DRect &from, const DRect &to) :
m_from(&from),
m_to(&to),
m_factorX(to.width()/from.width()),
m_factorY(to.height()/from.height()),
m_offsetX(to.p1().m_x - from.p1().m_x * m_factorX),
m_offsetY(to.p1().m_y - from.p1().m_y * m_factorY) { }
~DScaler() {}
//! Returns the rectangle in the source coordinate system.
const DRect &from() const { return *m_from; }
//! Returns the rectangle in the target coordinate system.
const DRect &to() const { return *m_to; }
//! Transforms x-coordinates from source to target coordinate system.
double scaleToX(double x) { return x * m_factorX + m_offsetX; }
//! Transforms y-coordinates from source to target coordinate system.
double scaleToY(double y) { return y * m_factorY + m_offsetY; }
//! Scales a horizontal length from source to target coordinate system.
double scaleWidth(double width) { return width * m_to->width() /m_from->width(); }
//! Scales a vertical length from source to target coordinate system.
double scaleHeight(double height) { return height * m_to->height()/m_from->height(); }
};
//! Output operator for scalers.
OGDF_EXPORT ostream &operator<<(ostream &os, const DScaler &ds);
/**
* \brief Line segments with real coordinates.
*/
class OGDF_EXPORT DSegment : public DLine {
protected:
public:
//! Creates an empty line segment.
DSegment() : DLine() {}
//! Creates a line segment from \a p1 to \a p2.
DSegment(const DPoint &p1, const DPoint &p2) : DLine(p1, p2) {}
//! Creates a line segment defined by the start and end point of line \a dl.
DSegment(const DLine &dl) : DLine(dl) {}
//! Creates a line segment from (\a x1,\a y1) to (\a x2,\a y2).
DSegment(double x1, double y1, double x2, double y2) : DLine(x1, y1, x2, y2) {}
//! Copy constructor.
DSegment(const DSegment &ds) : DLine(ds) {}
/**
* \brief Determines if \a segment is left or right of this segment.
*
* \return a positve number if \a segment is left of this segment, and a
* a negative number if \a segment is right of this segment.
*/
double det(const DSegment &segment) const {
return (dx() * segment.dy() - dy() * segment.dx());
}
};
/**
* \brief Polygons with real coordinates.
*/
class OGDF_EXPORT DPolygon : public DPolyline {
protected:
bool m_counterclock; //!< If true points are given in conter-clockwise order.
public:
/**
* \brief Creates an empty polygon.
*
* @param cc determines in which order the points will be given; true means
* counter-clockwise, false means clockwise.
*/
DPolygon(bool cc = true) : m_counterclock(cc) { }
//! Creates a polgon from a rectangle.
DPolygon(const DRect &rect, bool cc = true) : m_counterclock(cc) {
operator=(rect);
}
//! Copy constructor.
DPolygon(const DPolygon &dop) : DPolyline(dop), m_counterclock(dop.m_counterclock) { }
//! Returns true iff points are given in counter-clockwise order.
bool counterclock() { return m_counterclock; }
//! Assignment operator.
DPolygon &operator=(const DPolygon &dop) {
List<DPoint>::operator =(dop);
m_counterclock = dop.m_counterclock;
return *this;
}
//! Assignment operator (for assigning from a rectangle).
DPolygon &operator=(const DRect &rect);
//! Returns the line segment that starts at position \a it.
DSegment segment(ListConstIterator<DPoint> it) const;
//! Inserts point \a p, that must lie on a polygon segment.
ListIterator<DPoint> insertPoint(const DPoint &p) {
return insertPoint(p, begin(), begin());
}
/**
* \brief Inserts point \a p, but just searching from point \a p1 to \a p2.
*
* That is, from the segment starting at \a p1 to the segment ending at \a p2.
*/
ListIterator<DPoint> insertPoint(const DPoint &p,
ListIterator<DPoint> p1,
ListIterator<DPoint> p2);
//! Inserts point p on every segment (a,b) with \a p in the open range ]a, b[.
void insertCrossPoint(const DPoint &p);
//! Returns the list of intersection points of this polygon with \a p.
int getCrossPoints(const DPolygon &p, List<DPoint> &crossPoints) const;
//! Deletes all consecutive points that are equal.
void unify();
//! Deletes all points, which are not facets.
void normalize();
//! Writes the polygon as graph in gml-format to file \a filename.
void writeGML(const char* filename) const;
//! Writes the polygon as graph in gml-format to output stream \a stream.
void writeGML(ostream &stream) const;
/**
* \brief Checks wether a Point /a p is inside the Poylgon or not.
* \note Polygons with crossings have inner areas that count as outside!
* \par p the Point to check.
* return true if Point is inside.
*/
bool containsPoint(DPoint &p) const;
};
//! Output operator for polygons.
OGDF_EXPORT ostream &operator<<(ostream &os, const DPolygon &dop);
} // end namespace ogdf
#endif
|