1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
/*
* $Revision: 2593 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-15 15:33:53 +0200 (So, 15. Jul 2012) $
***************************************************************/
/** \file
* \brief Declaration of simple graph algorithms.
*
* \author Carsten Gutwenger and Sebastian Leipert
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#ifdef _MSC_VER
#pragma once
#endif
#ifndef OGDF_SIMPLE_GRAPH_ALG_H
#define OGDF_SIMPLE_GRAPH_ALG_H
#include "EdgeArray.h"
#include "SList.h"
#include "BoundedStack.h"
namespace ogdf {
//---------------------------------------------------------
// Methods for loops
//---------------------------------------------------------
//! Returns true iff \a G contains no self-loop.
/**
* @param G is the input graph.
* @return true if \a G contains no self-loops (edges whose two endpoints are the same), false otherwise.
*/
OGDF_EXPORT bool isLoopFree(const Graph &G);
//! Removes all self-loops from \a G and returns all nodes with self-loops in \a L.
/**
* @tparam NODELIST is the type of the node list for returning the nodes with self-loops.
* @param G is the input graph.
* @param L is assigned the list of nodes with self-loops.
*/
template<class NODELIST>
void makeLoopFree(Graph &G, NODELIST &L)
{
L.clear();
edge e, eNext;
for (e = G.firstEdge(); e; e = eNext) {
eNext = e->succ();
if (e->isSelfLoop()) {
L.pushBack(e->source());
G.delEdge(e);
}
}
}
//! Removes all self-loops from \a G.
/**
* @param G is the input graph.
*/
OGDF_EXPORT void makeLoopFree(Graph &G);
//---------------------------------------------------------
// Methods for parallel edges
//---------------------------------------------------------
//! Sorts the edges of \a G such that parallel edges come after each other in the list.
/**
* @param G is the input graph.
* @param edges is assigned the list of sorted edges.
*/
OGDF_EXPORT void parallelFreeSort(const Graph &G, SListPure<edge> &edges);
//! Returns true iff \a G contains no paralle edges.
/**
* A parallel edge is an edge e1=(v,w) such that there exists another edge e2=(v,w) in
* the graph. Reversal edges (e.g. (v,w) and (w,v)) are not parallel edges. If you want to
* test if a graph contains no undirected parallel edges, use isParallelFreeUndirected().
*
* @param G is the input graph.
* @return true if \a G contains no multi-edges (edges with the same source and target).
*/
OGDF_EXPORT bool isParallelFree(const Graph &G);
//! Returns the number of parallel edges in \a G.
/**
* A parallel edge is an edge e1=(v,w) such that there exists another edge e2=(v,w) in
* the graph. Reversal edges (e.g. (v,w) and (w,v)) are not parallel edges. If you want to
* also take reversal edges into account, use numParallelEdgesUndirected().
*
* @param G is the input graph.
* @return is the number of parallel edges: for each bundle of parallel edges between two nodes
* v and w, all but one are counted.
*/
OGDF_EXPORT int numParallelEdges(const Graph &G);
//! Removes all but one of each bundle of parallel edges.
/**
* A parallel edge is an edge e1=(v,w) such that there exists another edge e2=(v,w) in
* the graph. Reversal edges (e.g. (v,w) and (w,v)) are not multi-edges. If you want to
* remove parallel and reversal edges, use makeParallelFreeUndirected(Graph&,EDGELIST&).
*
* @tparam EDGELIST is the type of edge list that will be assigned the list of parallel edges.
* @param G is the input graph.
* @param parallelEdges is assigned the list of remaining edges in \a G that were part of a
* bundle of parallel edges in the input graph.
*/
template <class EDGELIST>
void makeParallelFree(Graph &G, EDGELIST ¶llelEdges)
{
parallelEdges.clear();
if (G.numberOfEdges() <= 1) return;
SListPure<edge> edges;
parallelFreeSort(G,edges);
SListConstIterator<edge> it = edges.begin();
edge ePrev = *it++, e;
bool bAppend = true;
while(it.valid()) {
e = *it++;
if (ePrev->source() == e->source() && ePrev->target() == e->target()) {
G.delEdge(e);
if (bAppend) { parallelEdges.pushBack(ePrev); bAppend = false; }
} else {
ePrev = e; bAppend = true;
}
}
}
//! Removes all but one edge of each bundle of parallel edges in \a G.
/**
* A parallel edge is an edge e1=(v,w) such that there exists another edge e2=(v,w) in
* the graph. Reversal edges (e.g. (v,w) and (w,v)) are not parallel edges. If you want to
* remove parallel and reversal edges, use makeParallelFreeUndirected(Graph&).
*
* @param G is the input graph.
*/
inline void makeParallelFree(Graph &G) {
List<edge> parallelEdges;
makeParallelFree(G,parallelEdges);
}
//! Sorts the edges of \a G such that undirected parallel edges come after each other in the list.
/**
* An undirected parallel edges is an edge e1=(v,w) such that there exists another edge e2=(v,w) or (w,v)
* in the graph.
*
* @param G is the input graph.
* @param edges is assigned the list of sorted edges.
* @param minIndex is assigned for each edge (v,w) the index min(index(v),index(w)).
* @param maxIndex is assigned for each edge (v,w) the index max(index(v),index(w)).
*/
OGDF_EXPORT void parallelFreeSortUndirected(
const Graph &G,
SListPure<edge> &edges,
EdgeArray<int> &minIndex,
EdgeArray<int> &maxIndex);
//! Returns true iff \a G contains no undirected parallel edges.
/**
* An undirected parallel edges is an edge e1=(v,w) such that there exists another edge e2=(v,w) or (w,v)
* in the graph.
*
* @param G is the input graph.
* @return true if \a G contains no undirected parallel edges.
*/
OGDF_EXPORT bool isParallelFreeUndirected(const Graph &G);
//! Returns the number of undirected parallel edges in \a G.
/**
* An undirected parallel edges is an edge e1=(v,w) such that there exists another edge e2=(v,w) or (w,v)
* in the graph.
*
* @param G is the input graph.
* @return the number of undirected parallel edges; for each unordered pair {v,w} of nodes, all
* but one of the edges with endpoints v and w (in any order) are counted.
*/
OGDF_EXPORT int numParallelEdgesUndirected(const Graph &G);
//! Removes all but one of each bundle of undirected parallel edges.
/**
* An undirected parallel edges is an edge e1=(v,w) such that there exists another edge e2=(v,w) or (w,v)
* in the graph. The function removes unordered pair {v,w} of nodes all but one of the edges with
* endpoints v and w (in any order).
*
* @tparam EDGELIST is the type of edge list that will be assigned the list of edges.
* @param G is the input graph.
* @param parallelEdges is assigned the list of remaining edges that were part of a bundle
* of undirected parallel edges in the input graph.
*/
template <class EDGELIST>
void makeParallelFreeUndirected(Graph &G, EDGELIST ¶llelEdges)
{
parallelEdges.clear();
if (G.numberOfEdges() <= 1) return;
SListPure<edge> edges;
EdgeArray<int> minIndex(G), maxIndex(G);
parallelFreeSortUndirected(G,edges,minIndex,maxIndex);
SListConstIterator<edge> it = edges.begin();
edge ePrev = *it++, e;
bool bAppend = true;
while(it.valid()) {
e = *it++;
if (minIndex[ePrev] == minIndex[e] && maxIndex[ePrev] == maxIndex[e]) {
G.delEdge(e);
if (bAppend) { parallelEdges.pushBack(ePrev); bAppend = false; }
} else {
ePrev = e; bAppend = true;
}
}
}
//! Removes all but one of each bundle of undirected parallel edges.
/**
* An undirected parallel edges is an edge e1=(v,w) such that there exists another edge e2=(v,w) or (w,v)
* in the graph. The function removes unordered pair {v,w} of nodes all but one of the edges with
* endpoints v and w (in any order).
*
* @param G is the input graph.
*/
inline void makeParallelFreeUndirected(Graph &G) {
List<edge> parallelEdges;
makeParallelFreeUndirected(G,parallelEdges);
}
//! Removes all but one of each bundle of undirected parallel edges.
/**
* An undirected parallel edges is an edge e1=(v,w) such that there exists another edge e2=(v,w) or (w,v)
* in the graph. The function removes unordered pair {v,w} of nodes all but one of the edges with
* endpoints v and w (in any order).
*
* @tparam EDGELIST is the type of edge list that is assigned the list of edges.
* @param G is the input graph.
* @param parallelEdges is assigned the list of remaining edges that were
* part of a bundle of undirected parallel edges in the input graph.
* @param cardPositive contains for each edge the number of removed undirected parallel edges
* pointing in the same direction.
* @param cardNegative contains for each edge the number of removed undirected parallel edges
* pointing in the opposite direction.
*/
template <class EDGELIST>
void makeParallelFreeUndirected(
Graph &G,
EDGELIST ¶llelEdges,
EdgeArray<int> &cardPositive,
EdgeArray<int> &cardNegative)
{
parallelEdges.clear();
cardPositive.fill(0);
cardNegative.fill(0);
if (G.numberOfEdges() <= 1) return;
SListPure<edge> edges;
EdgeArray<int> minIndex(G), maxIndex(G);
parallelFreeSortUndirected(G,edges,minIndex,maxIndex);
SListConstIterator<edge> it = edges.begin();
edge ePrev = *it++, e;
bool bAppend = true;
// int counter = 0;
while(it.valid())
{
e = *it++;
if (minIndex[ePrev] == minIndex[e] && maxIndex[ePrev] == maxIndex[e])
{
if (ePrev->source() == e->source() && ePrev->target() == e->target())
cardPositive[ePrev]++;
else if (ePrev->source() == e->target() && ePrev->target() == e->source())
cardNegative[ePrev]++;
G.delEdge(e);
if (bAppend)
{
parallelEdges.pushBack(ePrev);
bAppend = false;
}
}
else
{
ePrev = e; bAppend = true;
}
}
}
//! Computes the bundles of undirected parallel edges in \a G.
/**
* Stores for one (arbitrarily chosen) reference edge all edges belonging to the same bundle of
* undirected parallel edges; no edge is removed from the graph.
*
* @tparam EDGELIST is the type of edge list that is assigned the list of edges.
* @param G is the input graph.
* @param parallelEdges is assigned for each reference edge the list of edges belonging to the
* bundle of undirected parallel edges.
*/
template <class EDGELIST>
void getParallelFreeUndirected(const Graph &G, EdgeArray<EDGELIST> ¶llelEdges)
{
if (G.numberOfEdges() <= 1) return;
SListPure<edge> edges;
EdgeArray<int> minIndex(G), maxIndex(G);
parallelFreeSortUndirected(G,edges,minIndex,maxIndex);
SListConstIterator<edge> it = edges.begin();
edge ePrev = *it++, e;
while(it.valid())
{
e = *it++;
if (minIndex[ePrev] == minIndex[e] && maxIndex[ePrev] == maxIndex[e])
parallelEdges[ePrev].pushBack(e);
else
ePrev = e;
}
}
//---------------------------------------------------------
// Methods for simple graphs
//---------------------------------------------------------
//! Returns true iff \a G contains neither self-loops nor parallel edges.
/**
* @param G is the input graph.
* @return true if \a G is simple, i.e. contains neither self-loops nor parallel edges, false otherwise.
*/
inline bool isSimple(const Graph &G) {
return isLoopFree(G) && isParallelFree(G);
}
//! Removes all self-loops and all but one edge of each bundle of parallel edges.
/**
* @param G is the input graph.
*/
inline void makeSimple(Graph &G) {
makeLoopFree(G);
makeParallelFree(G);
}
//! Returns true iff \a G contains neither self-loops nor undirected parallel edges.
/**
* @param G is the input graph.
* @return true if \a G is (undirected) simple, i.e. contains neither self-loops
* nor undirected parallel edges, false otherwise.
*/
inline bool isSimpleUndirected(const Graph &G) {
return isLoopFree(G) && isParallelFreeUndirected(G);
}
//! Removes all self-loops and all but one edge of each bundle of undirected parallel edges.
/**
* @param G is the input graph.
*/
inline void makeSimpleUndirected(Graph &G) {
makeLoopFree(G);
makeParallelFreeUndirected(G);
}
//---------------------------------------------------------
// Methods for connectivity
//---------------------------------------------------------
//! Returns true iff \a G is connected.
/**
* @param G is the input graph.
* @return true if \a G is connected, false otherwise.
*/
OGDF_EXPORT bool isConnected(const Graph &G);
//! Makes \a G connected by adding a minimum number of edges.
/**
* @param G is the input graph.
* @param added is assigned the added edges.
*/
OGDF_EXPORT void makeConnected(Graph &G, List<edge> &added);
//! makes \a G connected by adding a minimum number of edges.
/**
* @param G is the input graph.
*/
inline void makeConnected(Graph &G) {
List<edge> added;
makeConnected(G,added);
}
//! Computes the connected components of \a G.
/**
* Assigns component numbers (0, 1, ...) to the nodes of \a G. The component number of each
* node is stored in the node array \a component.
*
* @param G is the input graph.
* @param component is assigned a mapping from nodes to component numbers.
* @return the number of connected components.
*/
OGDF_EXPORT int connectedComponents(const Graph &G, NodeArray<int> &component);
//! Computes the connected components of \a G and returns the list of isolated nodes.
/**
* Assigns component numbers (0, 1, ...) to the nodes of \a G. The component number of each
* node is stored in the node array \a component.
*
* @param G is the input graph.
* @param isolated is assigned the list of isolated nodes. An isolated
* node is a node without incident edges.
* @param component is assigned a mapping from nodes to component numbers.
* @return the number of connected components.
*/
OGDF_EXPORT int connectedIsolatedComponents(
const Graph &G,
List<node> &isolated,
NodeArray<int> &component);
//! Returns true iff \a G is biconnected.
/**
* @param G is the input graph.
* @param cutVertex If false is returned, \a cutVertex is assigned either 0 if \a G is not connected,
* or a cut vertex in \a G.
*/
OGDF_EXPORT bool isBiconnected(const Graph &G, node &cutVertex);
//! Returns true iff \a G is biconnected.
/**
* @param G is the input graph.
*/
inline bool isBiconnected(const Graph &G) {
node cutVertex;
return isBiconnected(G,cutVertex);
}
//! Makes \a G biconnected by adding edges.
/**
* @param G is the input graph.
* @param added is assigned the list of inserted edges.
*/
OGDF_EXPORT void makeBiconnected(Graph &G, List<edge> &added);
//! Makes \a G biconnected by adding edges.
/**
* @param G is the input graph.
*/
inline void makeBiconnected(Graph &G) {
List<edge> added;
makeBiconnected(G,added);
}
//! Computes the biconnected components of \a G.
/**
* Assigns component numbers (0, 1, ...) to the edges of \ G. The component number of each edge
* is stored in the edge array \a component.
*
* @param G is the input graph.
* @param component is assigned a mapping from edges to component numbers.
* @return the number of biconnected components (including isolated nodes).
*/
OGDF_EXPORT int biconnectedComponents(const Graph &G, EdgeArray<int> &component);
//! Returns true iff \a G is triconnected.
/**
* If true is returned, then either
* - \a s1 and \a s2 are either both 0 if \a G is not connected; or
* - \a s1 is a cut vertex and \a s2 = 0 if \a G is not biconnected; or
* - \a s1 and \a s2 are a separation pair otherwise.
*
* @param G is the input graph.
* @param s1 is assigned a cut vertex of one node of a separation pair, if \a G is not triconnected (see above).
* @param s2 is assigned one node of a separation pair, if \a G is not triconnected (see above).
* @return true if \a G is triconnected, false otherwise.
*/
OGDF_EXPORT bool isTriconnected(const Graph &G, node &s1, node &s2);
//! Returns true iff \a G is triconnected.
/**
* @param G is the input graph.
* @return true if \a G is triconnected, false otherwise.
*/
inline bool isTriconnected(const Graph &G) {
node s1, s2;
return isTriconnected(G,s1,s2);
}
//! Returns true iff \a G is triconnected (using a quadratic time algorithm!).
/**
* If true is returned, then either
* - \a s1 and \a s2 are either both 0 if \a G is not connected; or
* - \a s1 is a cut vertex and \a s2 = 0 if \a G is not biconnected; or
* - \a s1 and \a s2 are a separation pair otherwise.
*
* \warning This method has quadratic running time. An efficient linear time
* version is provided by isTriconnected().
*
* @param G is the input graph.
* @param s1 is assigned a cut vertex of one node of a separation pair, if \a G is not triconnected (see above).
* @param s2 is assigned one node of a separation pair, if \a G is not triconnected (see above).
* @return true if \a G is triconnected, false otherwise.
*/
OGDF_EXPORT bool isTriconnectedPrimitive(const Graph &G, node &s1, node &s2);
//! Returns true iff \a G is triconnected (using a quadratic time algorithm!).
/**
* \warning This method has quadratic running time. An efficient linear time
* version is provided by isTriconnected().
*
* @param G is the input graph.
* @return true if \a G is triconnected, false otherwise.
*/
inline bool isTriconnectedPrimitive(const Graph &G) {
node s1, s2;
return isTriconnectedPrimitive(G,s1,s2);
}
//! Triangulates a planarly embedded graph \a G by adding edges.
/**
* The result of this function is that \a G is made maximally planar by adding new edges.
* \a G will also be planarly embedded such that each face is a triangle.
*
* \pre \a G is planar, simple and represents a combinatorial embedding (i.e. \a G is planarly embedded).
*
* @param G is the input graph to which edges will be added.
*/
void triangulate(Graph &G);
//---------------------------------------------------------
// Methods for directed graphs
//---------------------------------------------------------
//! Returns true iff the digraph \a G is acyclic.
/**
* @param G is the input graph
* @param backedges is assigned the backedges of a DFS-tree.
* @return true if \a G contains no directed cycle, false otherwise.
*/
OGDF_EXPORT bool isAcyclic(const Graph &G, List<edge> &backedges);
//! Returns true iff the digraph \a G is acyclic.
/**
* @param G is the input graph
* @return true if \a G contains no directed cycle, false otherwise.
*/
inline bool isAcyclic(const Graph &G) {
List<edge> backedges;
return isAcyclic(G,backedges);
}
//! Returns true iff the undirected graph \a G is acyclic.
/**
* @param G is the input graph
* @param backedges is assigned the backedges of a DFS-tree.
* @return true if \a G contains no undirected cycle, false otherwise.
*/
OGDF_EXPORT bool isAcyclicUndirected(const Graph &G, List<edge> &backedges);
//! Returns true iff the undirected graph \a G is acyclic.
/**
* @param G is the input graph
* @return true if \a G contains no undirected cycle, false otherwise.
*/
inline bool isAcyclicUndirected(const Graph &G) {
List<edge> backedges;
return isAcyclicUndirected(G,backedges);
}
//! Makes the digraph \a G acyclic by removing edges.
/**
* The implementation removes all backedges of a DFS tree.
*
* @param G is the input graph
*/
OGDF_EXPORT void makeAcyclic(Graph &G);
//! Makes the digraph G acyclic by reversing edges.
/**
* \remark The implementation ignores self-loops and reverses
* the backedges of a DFS-tree.
*
* @param G is the input graph
*/
OGDF_EXPORT void makeAcyclicByReverse(Graph &G);
//! Returns true iff the digraph \a G contains exactly one source node (or is empty).
/**
* @param G is the input graph.
* @param source is assigned the single source if true is returned, or 0 otherwise.
* @return true if \a G has a single source, false otherwise.
*/
OGDF_EXPORT bool hasSingleSource(const Graph &G, node &source);
//! Returns true iff the digraph \a G contains exactly one source node (or is empty).
/**
* @param G is the input graph.
* @return true if \a G has a single source, false otherwise.
*/
inline bool hasSingleSource(const Graph &G) {
node source;
return hasSingleSource(G,source);
}
//! Returns true iff the digraph \a G contains exactly one sink node (or is empty).
/**
* @param G is the input graph.
* @param sink is assigned the single sink if true is returned, or 0 otherwise.
* @return true if \a G has a single sink, false otherwise.
*/
OGDF_EXPORT bool hasSingleSink(const Graph &G, node &sink);
//! Returns true iff the digraph \a G contains exactly one sink node (or is empty).
/**
* @param G is the input graph.
* @return true if \a G has a single sink, false otherwise.
*/
inline bool hasSingleSink(const Graph &G) {
node sink;
return hasSingleSink(G,sink);
}
//! Returns true iff \a G is an st-digraph.
/**
* A directed graph is an st-digraph if it is acyclic, contains exactly one source s
* and one sink t, and the edge (s,t).
*
* @param G is the input graph.
* @param s is assigned the single source (if true is returned).
* @param t is assigned the single sink (if true is returned).
* @param st is assigned the edge (s,t) (if true is returned).
* @return true if \a G is an st-digraph, false otherwise.
*/
OGDF_EXPORT bool isStGraph(const Graph &G, node &s, node &t, edge &st);
//! Returns true if \a G is an st-digraph.
/**
* A directed graph is an st-digraph if it is acyclic, contains exactly one source s
* and one sink t, and the edge (s,t).
* @param G is the input graph.
* @return true if \a G is an st-digraph, false otherwise.
*/
inline bool isStGraph(const Graph &G) {
node s, t;
edge st;
return isStGraph(G,s,t,st);
}
//! Computes a topological numbering of an acyclic digraph \a G.
/**
* \pre \a G is an acyclic directed graph.
*
* @param G is the input graph.
* @param num is assigned the topological numbering (0, 1, ...).
*/
OGDF_EXPORT void topologicalNumbering(const Graph &G, NodeArray<int> &num);
//! Computes the strongly connected components of the digraph \a G.
/**
* The function implements the algorithm by Tarjan.
*
* @param G is the input graph.
* @param component is assigned a mapping from nodes to component numbers (0, 1, ...).
* @return the number of strongly connected components.
*/
OGDF_EXPORT int strongComponents(const Graph& G, NodeArray<int>& component);
//---------------------------------------------------------
// Methods for trees and forests
//---------------------------------------------------------
//! Returns true iff \a G is a free forest, i.e. contains no undirected cycle.
/**
* @param G is the input graph.
* @return true if \ G is contains no undirected cycle, false otherwise.
*/
OGDF_EXPORT bool isFreeForest(const Graph &G);
//! Returns true iff \a G represents a forest, i.e., a collection of rooted trees.
/**
* @param G is the input graph.
* @param roots is assigned the list of root nodes of the trees in the forest.
* @return true if \a G represents a forest, false otherwise.
*/
OGDF_EXPORT bool isForest(const Graph& G, List<node> &roots);
//! Returns true iff \a G represents a forest, i.e. a collection of rooted trees.
/**
* @param G is the input graph.
* @return true if \a G represents a forest, false otherwise.
*/
inline bool isForest(const Graph &G)
{
List<node> roots;
return isForest(G,roots);
}
//! Returns true iff \a G represents a tree
/**
* @param G is the input graph.
* @param root is assigned the root node (if true is returned).
* @return true if \a G represents a tree, false otherwise.
*/
OGDF_EXPORT bool isTree (const Graph& G, node &root);
//! Returns true iff \a G represents a tree
/**
* @param G is the input graph.
* @return true if \a G represents a tree, false otherwise.
*/
inline bool isTree(const Graph &G) {
node root;
return isTree(G,root);
}
} // end namespace ogdf
#endif
|