File: Multilevel.cpp

package info (click to toggle)
bandage 0.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 15,684 kB
  • sloc: cpp: 45,359; sh: 491; makefile: 12
file content (885 lines) | stat: -rw-r--r-- 27,863 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/*
 * $Revision: 2552 $
 *
 * last checkin:
 *   $Author: gutwenger $
 *   $Date: 2012-07-05 16:45:20 +0200 (Do, 05. Jul 2012) $
 ***************************************************************/

/** \file
 * \brief Implementation of class Multlevel (used by FMMMLayout).
 *
 * \author Stefan Hachul
 *
 * \par License:
 * This file is part of the Open Graph Drawing Framework (OGDF).
 *
 * \par
 * Copyright (C)<br>
 * See README.txt in the root directory of the OGDF installation for details.
 *
 * \par
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 or 3 as published by the Free Software Foundation;
 * see the file LICENSE.txt included in the packaging of this file
 * for details.
 *
 * \par
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 * \see  http://www.gnu.org/copyleft/gpl.html
 ***************************************************************/


#include "Multilevel.h"
#include "Set.h"
#include "Node.h"
#include "../basic/Array.h"
#include "../basic/Math.h"
#include "../basic/simple_graph_alg.h"
#include "FMMMLayout.h"


namespace ogdf {

void Multilevel::create_multilevel_representations(
	Graph& G,
	NodeArray<NodeAttributes>& A,
	EdgeArray<EdgeAttributes>& E,
	int rand_seed,
	int galaxy_choice,
	int min_Graph_size,
	int random_tries,
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray <NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int & max_level)
{
	//make initialisations;
	srand(rand_seed);
	G_mult_ptr[0] = &G; //init graph at level 0 to the original undirected simple
	A_mult_ptr[0] = &A; //and loopfree connected graph G/A/E
	E_mult_ptr[0] = &E;

	int bad_edgenr_counter = 0;
	int act_level = 0;
	Graph* act_Graph_ptr = G_mult_ptr[0];

	while( (act_Graph_ptr->numberOfNodes() > min_Graph_size) &&
		edgenumbersum_of_all_levels_is_linear(G_mult_ptr,act_level,bad_edgenr_counter) )
	{
		Graph* G_new = new (Graph);
		NodeArray<NodeAttributes>* A_new = OGDF_NEW NodeArray<NodeAttributes>;
		EdgeArray<EdgeAttributes>* E_new = OGDF_NEW EdgeArray<EdgeAttributes>;
		G_mult_ptr[act_level+1] = G_new;
		A_mult_ptr[act_level+1] = A_new;
		E_mult_ptr[act_level+1] = E_new;

		init_multilevel_values(G_mult_ptr,A_mult_ptr,E_mult_ptr,act_level);
		partition_galaxy_into_solar_systems(G_mult_ptr,A_mult_ptr,E_mult_ptr,rand_seed,
			galaxy_choice,random_tries,act_level);
		collaps_solar_systems(G_mult_ptr,A_mult_ptr,E_mult_ptr,act_level);

		act_level++;
		act_Graph_ptr = G_mult_ptr[act_level];
	}
	max_level = act_level;
}


bool Multilevel::edgenumbersum_of_all_levels_is_linear(
	Array<Graph*> &G_mult_ptr,
	int act_level,
	int& bad_edgenr_counter)
{
	if(act_level == 0)
		return true;
	else
	{
		if(G_mult_ptr[act_level]->numberOfEdges()<=
			0.8 * double (G_mult_ptr[act_level-1]->numberOfEdges()))
			return true;
		else if(bad_edgenr_counter < 5)
		{
			bad_edgenr_counter++;
			return true;
		}
		else
			return false;
	}
}


inline void  Multilevel::init_multilevel_values(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int level)
{
	node v;
	forall_nodes(v,*G_mult_ptr[level])
		(*A_mult_ptr[level])[v].init_mult_values();

	edge e;
	forall_edges(e,*G_mult_ptr[level])
		(*E_mult_ptr[level])[e].init_mult_values();
}


inline void Multilevel::partition_galaxy_into_solar_systems(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int rand_seed,
	int galaxy_choice,
	int random_tries,
	int act_level)
{
	create_suns_and_planets(G_mult_ptr, A_mult_ptr, E_mult_ptr, rand_seed, galaxy_choice,
		random_tries, act_level);
	create_moon_nodes_and_pm_nodes(G_mult_ptr, A_mult_ptr, E_mult_ptr, act_level);
}


void Multilevel::create_suns_and_planets(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int rand_seed,
	int galaxy_choice,
	int random_tries,
	int act_level)
{
	Set Node_Set;
	node v, sun_node, planet_node, newNode, pos_moon_node;
	edge sun_edge, e;
	double dist_to_sun;
	List<node> planet_nodes;
	List<node> sun_nodes;

	//make initialisations
	sun_nodes.clear();
	Node_Set.set_seed(rand_seed); //set seed for random number generator
	forall_nodes(v,*G_mult_ptr[act_level])
		if(act_level == 0) (*A_mult_ptr[act_level])[v].set_mass(1);
	if(galaxy_choice == FMMMLayout::gcUniformProb)
		Node_Set.init_node_set(*G_mult_ptr[act_level]);
	else //galaxy_choice != gcUniformProb in FMMMLayout
		Node_Set.init_node_set(*G_mult_ptr[act_level],*A_mult_ptr[act_level]);


	while (!Node_Set.empty_node_set())
	{//while
		//randomly select a sun node
		planet_nodes.clear();
		if(galaxy_choice == FMMMLayout::gcUniformProb)
			sun_node = Node_Set.get_random_node();
		else if (galaxy_choice == FMMMLayout::gcNonUniformProbLowerMass)
			sun_node = Node_Set.get_random_node_with_lowest_star_mass(random_tries);
		else //galaxy_choice == FMMMLayout::gcNonUniformProbHigherMass
			sun_node = Node_Set.get_random_node_with_highest_star_mass(random_tries);
		sun_nodes.pushBack(sun_node);

		//create new node at higher level that represents the collapsed solar_system
		newNode = G_mult_ptr[act_level+1]->newNode();

		//update information for sun_node
		(*A_mult_ptr[act_level])[sun_node].set_higher_level_node(newNode);
		(*A_mult_ptr[act_level])[sun_node].set_type(1);
		(*A_mult_ptr[act_level])[sun_node].set_dedicated_sun_node(sun_node);
		(*A_mult_ptr[act_level])[sun_node].set_dedicated_sun_distance(0);

		//update information for planet_nodes
		forall_adj_edges(sun_edge,sun_node)
		{
			dist_to_sun = (*E_mult_ptr[act_level])[sun_edge].get_length();
			if (sun_edge->source() != sun_node)
				planet_node = sun_edge->source();
			else
				planet_node =  sun_edge->target();
			(*A_mult_ptr[act_level])[planet_node].set_type(2);
			(*A_mult_ptr[act_level])[planet_node].set_dedicated_sun_node(sun_node);
			(*A_mult_ptr[act_level])[planet_node].set_dedicated_sun_distance(dist_to_sun);
			planet_nodes.pushBack(planet_node);
		}

		//delete all planet_nodes and possible_moon_nodes from Node_Set

		ListConstIterator<node> planet_node_ptr;
		//forall_listiterators(node,planet_node_ptr,planet_nodes)
		for(planet_node_ptr = planet_nodes.begin(); planet_node_ptr.valid(); ++planet_node_ptr)
			if(!Node_Set.is_deleted(*planet_node_ptr))
				Node_Set.delete_node(*planet_node_ptr);

		for(planet_node_ptr = planet_nodes.begin(); planet_node_ptr.valid(); ++planet_node_ptr)
			//forall_listiterators(node,planet_node_ptr,planet_nodes)
		{
			forall_adj_edges(e,*planet_node_ptr)
			{
				if(e->source() == *planet_node_ptr)
					pos_moon_node = e->target();
				else
					pos_moon_node = e->source();
				if(!Node_Set.is_deleted(pos_moon_node))
					Node_Set.delete_node(pos_moon_node);
			}
		}
	}//while

	//init *A_mult_ptr[act_level+1] and set NodeAttributes information for new nodes
	A_mult_ptr[act_level+1]->init(*G_mult_ptr[act_level+1]);
	forall_listiterators(node, sun_node_ptr, sun_nodes)
	{
		newNode = (*A_mult_ptr[act_level])[*sun_node_ptr].get_higher_level_node();
		(*A_mult_ptr[act_level+1])[newNode].set_NodeAttributes((*A_mult_ptr[act_level])
			[*sun_node_ptr].get_width(),
			(*A_mult_ptr[act_level])
			[*sun_node_ptr].get_height(),
			(*A_mult_ptr[act_level])
			[*sun_node_ptr].get_position(),
			*sun_node_ptr,NULL);
		(*A_mult_ptr[act_level+1])[newNode].set_mass(0);
	}
}


void Multilevel::create_moon_nodes_and_pm_nodes(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int act_level)
{
	edge e;
    node v, nearest_neighbour_node = node(), neighbour_node, dedicated_sun_node;
    double dist_to_nearest_neighbour = 0, dedicated_sun_distance;
	bool first_adj_edge;
	int neighbour_type;
    edge moon_edge = edge();

	forall_nodes(v,*G_mult_ptr[act_level])
		if((*A_mult_ptr[act_level])[v].get_type() == 0) //a moon node
		{//forall
			//find nearest neighbour node
			first_adj_edge = true;
			forall_adj_edges(e,v)
			{//forall2
				if(v == e->source())
					neighbour_node = e->target();
				else
					neighbour_node = e->source();
				neighbour_type = (*A_mult_ptr[act_level])[neighbour_node].get_type();
				if( (neighbour_type == 2) || (neighbour_type == 3) )
				{//if_1
					if(first_adj_edge)
					{//if
						first_adj_edge = false;
						moon_edge = e;
						dist_to_nearest_neighbour = (*E_mult_ptr[act_level])[e].get_length();
						nearest_neighbour_node =  neighbour_node;
					}//if
					else if(dist_to_nearest_neighbour >(*E_mult_ptr[act_level])[e].get_length())
					{//else
						moon_edge = e;
						dist_to_nearest_neighbour = (*E_mult_ptr[act_level])[e].get_length();
						nearest_neighbour_node = neighbour_node;
					}//else
				}//if_1
			}//forall2
			//find dedic. solar system for v and update information in *A_mult_ptr[act_level]
			//and *E_mult_ptr[act_level]

			(*E_mult_ptr[act_level])[moon_edge].make_moon_edge(); //mark this edge
			dedicated_sun_node = (*A_mult_ptr[act_level])[nearest_neighbour_node].
				get_dedicated_sun_node();
			dedicated_sun_distance = dist_to_nearest_neighbour + (*A_mult_ptr[act_level])
				[nearest_neighbour_node].get_dedicated_sun_distance();
			(*A_mult_ptr[act_level])[v].set_type(4);
			(*A_mult_ptr[act_level])[v].set_dedicated_sun_node(dedicated_sun_node);
			(*A_mult_ptr[act_level])[v].set_dedicated_sun_distance(dedicated_sun_distance);
			(*A_mult_ptr[act_level])[v].set_dedicated_pm_node(nearest_neighbour_node);

			//identify nearest_neighbour_node as a pm_node and update its information

			(*A_mult_ptr[act_level])[nearest_neighbour_node].set_type(3);
			(*A_mult_ptr[act_level])[nearest_neighbour_node].
				get_dedicated_moon_node_List_ptr()->pushBack(v);
		}//forall
}


inline void Multilevel::collaps_solar_systems(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int act_level)
{
	EdgeArray<double> new_edgelength;
	calculate_mass_of_collapsed_nodes(G_mult_ptr, A_mult_ptr, act_level);
	create_edges_edgedistances_and_lambda_Lists(G_mult_ptr, A_mult_ptr, E_mult_ptr,
		new_edgelength, act_level);
	delete_parallel_edges_and_update_edgelength(G_mult_ptr, E_mult_ptr, new_edgelength,
		act_level);
}


inline void Multilevel::calculate_mass_of_collapsed_nodes(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray <NodeAttributes>*> &A_mult_ptr,
	int act_level)
{
	node v;
	node dedicated_sun,high_level_node;

	forall_nodes(v,*G_mult_ptr[act_level])
	{
		dedicated_sun = (*A_mult_ptr[act_level])[v].get_dedicated_sun_node();
		high_level_node =  (*A_mult_ptr[act_level])[dedicated_sun].get_higher_level_node();
		(*A_mult_ptr[act_level+1])[high_level_node].set_mass((*A_mult_ptr[act_level+1])
			[high_level_node].get_mass()+1);
	}
}


void Multilevel::create_edges_edgedistances_and_lambda_Lists(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	EdgeArray<double>& new_edgelength,int
	act_level)
{
	edge e, e_new;
	node s_node, t_node;
	node s_sun_node, t_sun_node;
	node high_level_sun_s, high_level_sun_t;
	double length_e, length_s_edge, length_t_edge, newlength;
	double lambda_s, lambda_t;
	List<edge> inter_solar_system_edges;

	//create new edges at act_level+1 and create for each inter solar system edge  at
	//act_level a link to its corresponding edge

	forall_edges(e,*G_mult_ptr[act_level])
	{//forall
		s_node = e->source();
		t_node = e->target();
		s_sun_node =  (*A_mult_ptr[act_level])[s_node].get_dedicated_sun_node();
		t_sun_node =  (*A_mult_ptr[act_level])[t_node].get_dedicated_sun_node();
		if( s_sun_node != t_sun_node) //a inter solar system edge
		{//if
			high_level_sun_s = (*A_mult_ptr[act_level])[s_sun_node].get_higher_level_node();
			high_level_sun_t = (*A_mult_ptr[act_level])[t_sun_node].get_higher_level_node();

			//create new edge in *G_mult_ptr[act_level+1]
			e_new = G_mult_ptr[act_level+1]->newEdge(high_level_sun_s,high_level_sun_t);
			(*E_mult_ptr[act_level])[e].set_higher_level_edge(e_new);
			inter_solar_system_edges.pushBack(e);
		}//if
	}//forall

	//init new_edgelength calculate the values of new_edgelength and the lambda Lists

	new_edgelength.init(*G_mult_ptr[act_level+1]);
	forall_listiterators(edge, e_ptr, inter_solar_system_edges)
	{//forall
		s_node = (*e_ptr)->source();
		t_node = (*e_ptr)->target();
		s_sun_node =  (*A_mult_ptr[act_level])[s_node].get_dedicated_sun_node();
		t_sun_node =  (*A_mult_ptr[act_level])[t_node].get_dedicated_sun_node();
		length_e = (*E_mult_ptr[act_level])[*e_ptr].get_length();
		length_s_edge =(*A_mult_ptr[act_level])[s_node].get_dedicated_sun_distance();
		length_t_edge =(*A_mult_ptr[act_level])[t_node].get_dedicated_sun_distance();
		newlength = length_s_edge + length_e + length_t_edge;

		//set new edge_length in *G_mult_ptr[act_level+1]
		e_new = (*E_mult_ptr[act_level])[*e_ptr].get_higher_level_edge();
		new_edgelength[e_new] = newlength;

		//create entries in lambda Lists
		lambda_s = length_s_edge/newlength;
		lambda_t = length_t_edge/newlength;
		(*A_mult_ptr[act_level])[s_node].get_lambda_List_ptr()->pushBack(lambda_s);
		(*A_mult_ptr[act_level])[t_node].get_lambda_List_ptr()->pushBack(lambda_t);
		(*A_mult_ptr[act_level])[s_node].get_neighbour_sun_node_List_ptr()->pushBack(
			t_sun_node);
		(*A_mult_ptr[act_level])[t_node].get_neighbour_sun_node_List_ptr()->pushBack(
			s_sun_node);
	}//forall
}


void Multilevel::delete_parallel_edges_and_update_edgelength(
	Array<Graph*> &G_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	EdgeArray<double>& new_edgelength,int
	act_level)
{
	EdgeMaxBucketFunc get_max_index;
	EdgeMinBucketFunc get_min_index;
    edge e_act, e_save = 0;
	Edge f_act;
	List<Edge> sorted_edges;
	Graph* Graph_ptr = G_mult_ptr[act_level+1];
    int save_s_index = 0, save_t_index = 0, act_s_index, act_t_index;
	int counter = 1;

	//make *G_mult_ptr[act_level+1] undirected
	makeSimpleUndirected(*G_mult_ptr[act_level+1]);

	//sort the List sorted_edges
	forall_edges(e_act,*Graph_ptr)
	{
		f_act.set_Edge(e_act,Graph_ptr);
		sorted_edges.pushBack(f_act);
	}

	sorted_edges.bucketSort(0,Graph_ptr->numberOfNodes()-1,get_max_index);
	sorted_edges.bucketSort(0,Graph_ptr->numberOfNodes()-1,get_min_index);

	//now parallel edges are consecutive in sorted_edges
	forall_listiterators(Edge, EdgeIterator,sorted_edges)
	{//for
		e_act = (*EdgeIterator).get_edge();
		act_s_index = e_act->source()->index();
		act_t_index = e_act->target()->index();

		if(EdgeIterator != sorted_edges.begin())
		{//if
			if( (act_s_index == save_s_index && act_t_index == save_t_index) ||
				(act_s_index == save_t_index && act_t_index == save_s_index) )
			{
				new_edgelength[e_save] += new_edgelength[e_act];
				Graph_ptr->delEdge(e_act);
				counter++;
			}
			else
			{
				if (counter > 1)
				{
					new_edgelength[e_save] /= counter;
					counter = 1;
				}
				save_s_index = act_s_index;
				save_t_index = act_t_index;
				e_save = e_act;
			}
		}//if
		else //first edge
		{
			save_s_index = act_s_index;
			save_t_index = act_t_index;
			e_save = e_act;
		}
	}//for

	//treat special case (last edges were multiple edges)
	if(counter >1)
		new_edgelength[e_save] /= counter;

	//init *E_mult_ptr[act_level+1] and import EdgeAttributes
	E_mult_ptr[act_level+1]->init(*G_mult_ptr[act_level+1]);
	forall_edges(e_act,*Graph_ptr)
		(*E_mult_ptr[act_level+1])[e_act].set_length(new_edgelength[e_act]);
}


void Multilevel::find_initial_placement_for_level(
	int level,
	int init_placement_way,
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr)
{
	List<node> pm_nodes;
	set_initial_positions_of_sun_nodes(level, G_mult_ptr, A_mult_ptr);
	set_initial_positions_of_planet_and_moon_nodes(level, init_placement_way, G_mult_ptr,
		A_mult_ptr, E_mult_ptr, pm_nodes);
	set_initial_positions_of_pm_nodes(level, init_placement_way, A_mult_ptr,
		E_mult_ptr, pm_nodes);
}


void Multilevel::set_initial_positions_of_sun_nodes(
	int level,
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray <NodeAttributes>*> &A_mult_ptr)
{
	node v_high, v_act;
	DPoint new_pos;
	forall_nodes(v_high,*G_mult_ptr[level+1])
	{
		v_act = (*A_mult_ptr[level+1])[v_high].get_lower_level_node();
		new_pos = (*A_mult_ptr[level+1])[v_high].get_position();
		(*A_mult_ptr[level])[v_act].set_position(new_pos);
		(*A_mult_ptr[level])[v_act].place();
	}
}


void Multilevel::set_initial_positions_of_planet_and_moon_nodes(
	int level,
	int init_placement_way,
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	List<node>& pm_nodes)
{
	double lambda, dedicated_sun_distance;
	int node_type;
	node v, v_adj, dedicated_sun;
	edge e;
	DPoint new_pos,dedicated_sun_pos, adj_sun_pos;
	List<DPoint> L;
	ListIterator<double> lambdaIterator;

	create_all_placement_sectors(G_mult_ptr,A_mult_ptr,E_mult_ptr,level);
	forall_nodes(v,*G_mult_ptr[level])
	{//for
		node_type = (*A_mult_ptr[level])[v].get_type();
		if(node_type == 3)
			pm_nodes.pushBack(v);
		else if(node_type == 2 || node_type == 4) //a planet_node or moon_node
		{//else
			L.clear();
			dedicated_sun = (*A_mult_ptr[level])[v].get_dedicated_sun_node();
			dedicated_sun_pos = (*A_mult_ptr[level])[dedicated_sun].get_position();
			dedicated_sun_distance = (*A_mult_ptr[level])[v].get_dedicated_sun_distance();

			if(init_placement_way == FMMMLayout::ipmAdvanced)
			{
				forall_adj_edges(e,v)
				{
					if(e->source() != v)
						v_adj = e->source();
					else
						v_adj = e->target();
					if( ( (*A_mult_ptr[level])[v].get_dedicated_sun_node() ==
						(*A_mult_ptr[level])[v_adj].get_dedicated_sun_node() ) &&
						( (*A_mult_ptr[level])[v_adj].get_type() != 1 ) &&
						( (*A_mult_ptr[level])[v_adj].is_placed() ) )
					{
						new_pos = calculate_position(dedicated_sun_pos,(*A_mult_ptr[level])
							[v_adj].get_position(),dedicated_sun_distance,
							(*E_mult_ptr[level])[e].get_length());
						L.pushBack(new_pos);
					}
				}
			}
			if ((*A_mult_ptr[level])[v].get_lambda_List_ptr()->empty())
			{//special case
				if(L.empty())
				{
					new_pos = create_random_pos(dedicated_sun_pos,(*A_mult_ptr[level])
						[v].get_dedicated_sun_distance(),
						(*A_mult_ptr[level])[v].get_angle_1(),
						(*A_mult_ptr[level])[v].get_angle_2());
					L.pushBack(new_pos);
				}
			}//special case
			else
			{//usual case
				lambdaIterator = (*A_mult_ptr[level])[v].get_lambda_List_ptr()->begin();

				forall_listiterators(node, adj_sun_ptr,*(*A_mult_ptr[level])[v].
					get_neighbour_sun_node_List_ptr())
				{
					lambda = *lambdaIterator;
					adj_sun_pos = (*A_mult_ptr[level])[*adj_sun_ptr].get_position();
					new_pos = get_waggled_inbetween_position(dedicated_sun_pos,adj_sun_pos,
						lambda);
					L.pushBack(new_pos);
					if(lambdaIterator != (*A_mult_ptr[level])[v].get_lambda_List_ptr()
						->rbegin())
						lambdaIterator = (*A_mult_ptr[level])[v].get_lambda_List_ptr()
						->cyclicSucc(lambdaIterator);
				}
			}//usual case

			(*A_mult_ptr[level])[v].set_position(get_barycenter_position(L));
			(*A_mult_ptr[level])[v].place();
		}//else
	}//for
}


void Multilevel::create_all_placement_sectors(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int level)
{
	node v_high, w_high, sun_node, v, ded_sun;
	edge e_high;
	List<DPoint> adj_pos;
    double angle_1 = 0.0, angle_2 = 0.0, act_angle_1, act_angle_2, next_angle, min_next_angle = 0.0;
	DPoint start_pos, end_pos;
	int MAX = 10; //the biggest of at most MAX random selected sectors is choosen
	int steps;
	ListIterator<DPoint> it, next_pos_ptr;
	bool first_angle;


	forall_nodes(v_high,(*G_mult_ptr[level+1]))
	{//forall
		//find pos of adjacent nodes
		adj_pos.clear();
		DPoint v_high_pos ((*A_mult_ptr[level+1])[v_high].get_x(),
			(*A_mult_ptr[level+1])[v_high].get_y());
		forall_adj_edges(e_high,v_high)
			if(!(*E_mult_ptr[level+1])[e_high].is_extra_edge())
			{
				if(v_high == e_high->source())
					w_high = e_high->target();
				else
					w_high = e_high->source();

				DPoint w_high_pos ((*A_mult_ptr[level+1])[w_high].get_x(),
					(*A_mult_ptr[level+1])[w_high].get_y());
				adj_pos.pushBack(w_high_pos);
			}
			if(adj_pos.empty()) //easy case
			{
				angle_1 = 0;
				angle_2 = 6.2831853;
			}
			else if(adj_pos.size() == 1) //special case
			{
				//create angle_1
				start_pos = *adj_pos.begin();
				DPoint x_parallel_pos (v_high_pos.m_x + 1, v_high_pos.m_y);
				angle_1 = angle(v_high_pos,x_parallel_pos,start_pos);
				//create angle_2
				angle_2 = angle_1 + Math::pi;
			}
			else //usual case
			{//else
				steps = 1;
				it = adj_pos.begin();
				do
				{
					//create act_angle_1
					start_pos = *it;
					DPoint x_parallel_pos (v_high_pos.m_x + 1, v_high_pos.m_y);
					act_angle_1 = angle(v_high_pos,x_parallel_pos,start_pos);
					//create act_angle_2
					first_angle = true;

					for(next_pos_ptr = adj_pos.begin();next_pos_ptr.valid();++next_pos_ptr)
					{
						next_angle = angle(v_high_pos,start_pos,*next_pos_ptr);

						if(start_pos != *next_pos_ptr && (first_angle || next_angle <
							min_next_angle))
						{
							min_next_angle = next_angle;
							first_angle = false;
						}
					}
					act_angle_2 = act_angle_1 + min_next_angle;
					if((it == adj_pos.begin())||((act_angle_2-act_angle_1)>(angle_2-angle_1)))
					{
						angle_1 = act_angle_1;
						angle_2 = act_angle_2;
					}
					if(it != adj_pos.rbegin())
						it = adj_pos.cyclicSucc(it);
					steps++;
				}
				while((steps <= MAX) && (it != adj_pos.rbegin()));

				if(angle_1 == angle_2)
					angle_2 = angle_1 + Math::pi;
			}//else

			//import angle_1 and angle_2 to the dedicated suns at level level
			sun_node = (*A_mult_ptr[level+1])[v_high].get_lower_level_node();
			(*A_mult_ptr[level])[sun_node].set_angle_1(angle_1);
			(*A_mult_ptr[level])[sun_node].set_angle_2(angle_2);
	}//forall

	//import the angle values from the values of the dedicated sun nodes
	forall_nodes(v,*G_mult_ptr[level])
	{
		ded_sun = (*A_mult_ptr[level])[v].get_dedicated_sun_node();
		(*A_mult_ptr[level])[v].set_angle_1((*A_mult_ptr[level])[ded_sun].get_angle_1());
		(*A_mult_ptr[level])[v].set_angle_2((*A_mult_ptr[level])[ded_sun].get_angle_2());
	}
}


void Multilevel::set_initial_positions_of_pm_nodes(
	int level,
	int init_placement_way,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	List<node>& pm_nodes)
{
	double moon_dist, sun_dist, lambda;
	node v_adj, sun_node;
	edge e;
	DPoint sun_pos, moon_pos, new_pos, adj_sun_pos;
	List<DPoint> L;
	ListIterator<double> lambdaIterator;

	forall_listiterators(node,v_ptr,pm_nodes)
	{//forall
		L.clear();
		sun_node = (*A_mult_ptr[level])[*v_ptr].get_dedicated_sun_node();
		sun_pos =  (*A_mult_ptr[level])[sun_node].get_position();
		sun_dist = (*A_mult_ptr[level])[*v_ptr].get_dedicated_sun_distance();

		if(init_placement_way == FMMMLayout::ipmAdvanced)
		{//if
			forall_adj_edges(e,*v_ptr)
			{
				if(e->source() != *v_ptr)
					v_adj = e->source();
				else
					v_adj = e->target();
				if( (!(*E_mult_ptr[level])[e].is_moon_edge()) &&
					( (*A_mult_ptr[level])[*v_ptr].get_dedicated_sun_node() ==
					(*A_mult_ptr[level])[v_adj].get_dedicated_sun_node() ) &&
					( (*A_mult_ptr[level])[v_adj].get_type() != 1 ) &&
					( (*A_mult_ptr[level])[v_adj].is_placed() ) )
				{
					new_pos = calculate_position(sun_pos,(*A_mult_ptr[level])[v_adj].
						get_position(),sun_dist,(*E_mult_ptr[level])
						[e].get_length());
					L.pushBack(new_pos);
				}
			}
		}//if
		forall_listiterators(node, moon_node_ptr,*(*A_mult_ptr[level])[*v_ptr].
			get_dedicated_moon_node_List_ptr())
		{
			moon_pos = (*A_mult_ptr[level])[*moon_node_ptr].get_position();
			moon_dist =  (*A_mult_ptr[level])[*moon_node_ptr].get_dedicated_sun_distance();
			lambda = sun_dist/moon_dist;
			new_pos = get_waggled_inbetween_position(sun_pos,moon_pos,lambda);
			L.pushBack(new_pos);
		}

		if (!(*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()->empty())
		{
			lambdaIterator = (*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()->begin();

			forall_listiterators(node,adj_sun_ptr,*(*A_mult_ptr[level])[*v_ptr].
				get_neighbour_sun_node_List_ptr())
			{
				lambda = *lambdaIterator;
				adj_sun_pos = (*A_mult_ptr[level])[*adj_sun_ptr].get_position();
				new_pos = get_waggled_inbetween_position(sun_pos,adj_sun_pos,lambda);
				L.pushBack(new_pos);
				if(lambdaIterator != (*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()
					->rbegin())
					lambdaIterator = (*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()
					->cyclicSucc(lambdaIterator);
			}
		}

		(*A_mult_ptr[level])[*v_ptr].set_position(get_barycenter_position(L));
		(*A_mult_ptr[level])[*v_ptr].place();
	}//forall
}


inline DPoint Multilevel::create_random_pos(DPoint center,double radius,double angle_1,
	double angle_2)
{
	const int BILLION = 1000000000;
	DPoint new_point;
	double rnd = double(randomNumber(1,BILLION)+1)/(BILLION+2);//rand number in (0,1)
	double rnd_angle = angle_1 +(angle_2-angle_1)*rnd;
	double dx = cos(rnd_angle) * radius;
	double dy = sin(rnd_angle) * radius;
	new_point.m_x = center.m_x + dx ;
	new_point.m_y = center.m_y + dy;
	return new_point;
}


inline DPoint Multilevel::get_waggled_inbetween_position(DPoint s, DPoint t, double lambda)
{
	const double WAGGLEFACTOR = 0.05;
	const int BILLION = 1000000000;
	DPoint inbetween_point;
	inbetween_point.m_x = s.m_x + lambda*(t.m_x - s.m_x);
	inbetween_point.m_y = s.m_y + lambda*(t.m_y - s.m_y);
	double radius = WAGGLEFACTOR * (t-s).norm();
	double rnd = double(randomNumber(1,BILLION)+1)/(BILLION+2);//rand number in (0,1)
	double rand_radius =  radius * rnd;
	return create_random_pos(inbetween_point,rand_radius,0,6.2831853);
}


inline DPoint Multilevel::get_barycenter_position(List<DPoint>& L)
{
	DPoint sum (0,0);
	DPoint barycenter;

	forall_listiterators(DPoint, act_point_ptr,L)
		sum = sum + (*act_point_ptr);
	barycenter.m_x = sum.m_x/L.size();
	barycenter.m_y = sum.m_y/L.size();
	return barycenter;
}


inline DPoint Multilevel::calculate_position(DPoint P, DPoint Q, double dist_P, double dist_Q)
{
	double dist_PQ = (P-Q).norm();
	double lambda = (dist_P + (dist_PQ - dist_P - dist_Q)/2)/dist_PQ;
	return get_waggled_inbetween_position(P,Q,lambda);
}


void Multilevel::delete_multilevel_representations(
	Array<Graph*> &G_mult_ptr,
	Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
	Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
	int max_level)
{
	for(int i=1; i<= max_level; i++)
	{
		delete G_mult_ptr[i];
		delete A_mult_ptr[i];
		delete E_mult_ptr[i];
	}
}


double Multilevel::angle(DPoint& P, DPoint& Q, DPoint& R)
{
	double dx1 = Q.m_x - P.m_x;
	double dy1 = Q.m_y - P.m_y;
	double dx2 = R.m_x - P.m_x;
	double dy2 = R.m_y - P.m_y;
	double fi;//the angle

	if ((dx1 == 0 && dy1 == 0) || (dx2 == 0 && dy2 == 0))
		cout<<"Multilevel::angle()"<<endl;

	double norm  = (dx1*dx1+dy1*dy1)*(dx2*dx2+dy2*dy2);
	double cosfi = (dx1*dx2+dy1*dy2) / sqrt(norm);

	if (cosfi >=  1.0 ) fi = 0;
	if (cosfi <= -1.0 ) fi = Math::pi;
	else
	{
		fi = acos(cosfi);
		if (dx1*dy2 < dy1*dx2) fi = -fi;
		if (fi < 0) fi += 2*Math::pi;
	}
	return fi;
}

}//namespace ogdf