1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
|
/*
* $Revision: 2552 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-05 16:45:20 +0200 (Do, 05. Jul 2012) $
***************************************************************/
/** \file
* \brief Implementation of class Multlevel (used by FMMMLayout).
*
* \author Stefan Hachul
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#include "Multilevel.h"
#include "Set.h"
#include "Node.h"
#include "../basic/Array.h"
#include "../basic/Math.h"
#include "../basic/simple_graph_alg.h"
#include "FMMMLayout.h"
namespace ogdf {
void Multilevel::create_multilevel_representations(
Graph& G,
NodeArray<NodeAttributes>& A,
EdgeArray<EdgeAttributes>& E,
int rand_seed,
int galaxy_choice,
int min_Graph_size,
int random_tries,
Array<Graph*> &G_mult_ptr,
Array<NodeArray <NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int & max_level)
{
//make initialisations;
srand(rand_seed);
G_mult_ptr[0] = &G; //init graph at level 0 to the original undirected simple
A_mult_ptr[0] = &A; //and loopfree connected graph G/A/E
E_mult_ptr[0] = &E;
int bad_edgenr_counter = 0;
int act_level = 0;
Graph* act_Graph_ptr = G_mult_ptr[0];
while( (act_Graph_ptr->numberOfNodes() > min_Graph_size) &&
edgenumbersum_of_all_levels_is_linear(G_mult_ptr,act_level,bad_edgenr_counter) )
{
Graph* G_new = new (Graph);
NodeArray<NodeAttributes>* A_new = OGDF_NEW NodeArray<NodeAttributes>;
EdgeArray<EdgeAttributes>* E_new = OGDF_NEW EdgeArray<EdgeAttributes>;
G_mult_ptr[act_level+1] = G_new;
A_mult_ptr[act_level+1] = A_new;
E_mult_ptr[act_level+1] = E_new;
init_multilevel_values(G_mult_ptr,A_mult_ptr,E_mult_ptr,act_level);
partition_galaxy_into_solar_systems(G_mult_ptr,A_mult_ptr,E_mult_ptr,rand_seed,
galaxy_choice,random_tries,act_level);
collaps_solar_systems(G_mult_ptr,A_mult_ptr,E_mult_ptr,act_level);
act_level++;
act_Graph_ptr = G_mult_ptr[act_level];
}
max_level = act_level;
}
bool Multilevel::edgenumbersum_of_all_levels_is_linear(
Array<Graph*> &G_mult_ptr,
int act_level,
int& bad_edgenr_counter)
{
if(act_level == 0)
return true;
else
{
if(G_mult_ptr[act_level]->numberOfEdges()<=
0.8 * double (G_mult_ptr[act_level-1]->numberOfEdges()))
return true;
else if(bad_edgenr_counter < 5)
{
bad_edgenr_counter++;
return true;
}
else
return false;
}
}
inline void Multilevel::init_multilevel_values(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int level)
{
node v;
forall_nodes(v,*G_mult_ptr[level])
(*A_mult_ptr[level])[v].init_mult_values();
edge e;
forall_edges(e,*G_mult_ptr[level])
(*E_mult_ptr[level])[e].init_mult_values();
}
inline void Multilevel::partition_galaxy_into_solar_systems(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int rand_seed,
int galaxy_choice,
int random_tries,
int act_level)
{
create_suns_and_planets(G_mult_ptr, A_mult_ptr, E_mult_ptr, rand_seed, galaxy_choice,
random_tries, act_level);
create_moon_nodes_and_pm_nodes(G_mult_ptr, A_mult_ptr, E_mult_ptr, act_level);
}
void Multilevel::create_suns_and_planets(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int rand_seed,
int galaxy_choice,
int random_tries,
int act_level)
{
Set Node_Set;
node v, sun_node, planet_node, newNode, pos_moon_node;
edge sun_edge, e;
double dist_to_sun;
List<node> planet_nodes;
List<node> sun_nodes;
//make initialisations
sun_nodes.clear();
Node_Set.set_seed(rand_seed); //set seed for random number generator
forall_nodes(v,*G_mult_ptr[act_level])
if(act_level == 0) (*A_mult_ptr[act_level])[v].set_mass(1);
if(galaxy_choice == FMMMLayout::gcUniformProb)
Node_Set.init_node_set(*G_mult_ptr[act_level]);
else //galaxy_choice != gcUniformProb in FMMMLayout
Node_Set.init_node_set(*G_mult_ptr[act_level],*A_mult_ptr[act_level]);
while (!Node_Set.empty_node_set())
{//while
//randomly select a sun node
planet_nodes.clear();
if(galaxy_choice == FMMMLayout::gcUniformProb)
sun_node = Node_Set.get_random_node();
else if (galaxy_choice == FMMMLayout::gcNonUniformProbLowerMass)
sun_node = Node_Set.get_random_node_with_lowest_star_mass(random_tries);
else //galaxy_choice == FMMMLayout::gcNonUniformProbHigherMass
sun_node = Node_Set.get_random_node_with_highest_star_mass(random_tries);
sun_nodes.pushBack(sun_node);
//create new node at higher level that represents the collapsed solar_system
newNode = G_mult_ptr[act_level+1]->newNode();
//update information for sun_node
(*A_mult_ptr[act_level])[sun_node].set_higher_level_node(newNode);
(*A_mult_ptr[act_level])[sun_node].set_type(1);
(*A_mult_ptr[act_level])[sun_node].set_dedicated_sun_node(sun_node);
(*A_mult_ptr[act_level])[sun_node].set_dedicated_sun_distance(0);
//update information for planet_nodes
forall_adj_edges(sun_edge,sun_node)
{
dist_to_sun = (*E_mult_ptr[act_level])[sun_edge].get_length();
if (sun_edge->source() != sun_node)
planet_node = sun_edge->source();
else
planet_node = sun_edge->target();
(*A_mult_ptr[act_level])[planet_node].set_type(2);
(*A_mult_ptr[act_level])[planet_node].set_dedicated_sun_node(sun_node);
(*A_mult_ptr[act_level])[planet_node].set_dedicated_sun_distance(dist_to_sun);
planet_nodes.pushBack(planet_node);
}
//delete all planet_nodes and possible_moon_nodes from Node_Set
ListConstIterator<node> planet_node_ptr;
//forall_listiterators(node,planet_node_ptr,planet_nodes)
for(planet_node_ptr = planet_nodes.begin(); planet_node_ptr.valid(); ++planet_node_ptr)
if(!Node_Set.is_deleted(*planet_node_ptr))
Node_Set.delete_node(*planet_node_ptr);
for(planet_node_ptr = planet_nodes.begin(); planet_node_ptr.valid(); ++planet_node_ptr)
//forall_listiterators(node,planet_node_ptr,planet_nodes)
{
forall_adj_edges(e,*planet_node_ptr)
{
if(e->source() == *planet_node_ptr)
pos_moon_node = e->target();
else
pos_moon_node = e->source();
if(!Node_Set.is_deleted(pos_moon_node))
Node_Set.delete_node(pos_moon_node);
}
}
}//while
//init *A_mult_ptr[act_level+1] and set NodeAttributes information for new nodes
A_mult_ptr[act_level+1]->init(*G_mult_ptr[act_level+1]);
forall_listiterators(node, sun_node_ptr, sun_nodes)
{
newNode = (*A_mult_ptr[act_level])[*sun_node_ptr].get_higher_level_node();
(*A_mult_ptr[act_level+1])[newNode].set_NodeAttributes((*A_mult_ptr[act_level])
[*sun_node_ptr].get_width(),
(*A_mult_ptr[act_level])
[*sun_node_ptr].get_height(),
(*A_mult_ptr[act_level])
[*sun_node_ptr].get_position(),
*sun_node_ptr,NULL);
(*A_mult_ptr[act_level+1])[newNode].set_mass(0);
}
}
void Multilevel::create_moon_nodes_and_pm_nodes(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int act_level)
{
edge e;
node v, nearest_neighbour_node = node(), neighbour_node, dedicated_sun_node;
double dist_to_nearest_neighbour = 0, dedicated_sun_distance;
bool first_adj_edge;
int neighbour_type;
edge moon_edge = edge();
forall_nodes(v,*G_mult_ptr[act_level])
if((*A_mult_ptr[act_level])[v].get_type() == 0) //a moon node
{//forall
//find nearest neighbour node
first_adj_edge = true;
forall_adj_edges(e,v)
{//forall2
if(v == e->source())
neighbour_node = e->target();
else
neighbour_node = e->source();
neighbour_type = (*A_mult_ptr[act_level])[neighbour_node].get_type();
if( (neighbour_type == 2) || (neighbour_type == 3) )
{//if_1
if(first_adj_edge)
{//if
first_adj_edge = false;
moon_edge = e;
dist_to_nearest_neighbour = (*E_mult_ptr[act_level])[e].get_length();
nearest_neighbour_node = neighbour_node;
}//if
else if(dist_to_nearest_neighbour >(*E_mult_ptr[act_level])[e].get_length())
{//else
moon_edge = e;
dist_to_nearest_neighbour = (*E_mult_ptr[act_level])[e].get_length();
nearest_neighbour_node = neighbour_node;
}//else
}//if_1
}//forall2
//find dedic. solar system for v and update information in *A_mult_ptr[act_level]
//and *E_mult_ptr[act_level]
(*E_mult_ptr[act_level])[moon_edge].make_moon_edge(); //mark this edge
dedicated_sun_node = (*A_mult_ptr[act_level])[nearest_neighbour_node].
get_dedicated_sun_node();
dedicated_sun_distance = dist_to_nearest_neighbour + (*A_mult_ptr[act_level])
[nearest_neighbour_node].get_dedicated_sun_distance();
(*A_mult_ptr[act_level])[v].set_type(4);
(*A_mult_ptr[act_level])[v].set_dedicated_sun_node(dedicated_sun_node);
(*A_mult_ptr[act_level])[v].set_dedicated_sun_distance(dedicated_sun_distance);
(*A_mult_ptr[act_level])[v].set_dedicated_pm_node(nearest_neighbour_node);
//identify nearest_neighbour_node as a pm_node and update its information
(*A_mult_ptr[act_level])[nearest_neighbour_node].set_type(3);
(*A_mult_ptr[act_level])[nearest_neighbour_node].
get_dedicated_moon_node_List_ptr()->pushBack(v);
}//forall
}
inline void Multilevel::collaps_solar_systems(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int act_level)
{
EdgeArray<double> new_edgelength;
calculate_mass_of_collapsed_nodes(G_mult_ptr, A_mult_ptr, act_level);
create_edges_edgedistances_and_lambda_Lists(G_mult_ptr, A_mult_ptr, E_mult_ptr,
new_edgelength, act_level);
delete_parallel_edges_and_update_edgelength(G_mult_ptr, E_mult_ptr, new_edgelength,
act_level);
}
inline void Multilevel::calculate_mass_of_collapsed_nodes(
Array<Graph*> &G_mult_ptr,
Array<NodeArray <NodeAttributes>*> &A_mult_ptr,
int act_level)
{
node v;
node dedicated_sun,high_level_node;
forall_nodes(v,*G_mult_ptr[act_level])
{
dedicated_sun = (*A_mult_ptr[act_level])[v].get_dedicated_sun_node();
high_level_node = (*A_mult_ptr[act_level])[dedicated_sun].get_higher_level_node();
(*A_mult_ptr[act_level+1])[high_level_node].set_mass((*A_mult_ptr[act_level+1])
[high_level_node].get_mass()+1);
}
}
void Multilevel::create_edges_edgedistances_and_lambda_Lists(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
EdgeArray<double>& new_edgelength,int
act_level)
{
edge e, e_new;
node s_node, t_node;
node s_sun_node, t_sun_node;
node high_level_sun_s, high_level_sun_t;
double length_e, length_s_edge, length_t_edge, newlength;
double lambda_s, lambda_t;
List<edge> inter_solar_system_edges;
//create new edges at act_level+1 and create for each inter solar system edge at
//act_level a link to its corresponding edge
forall_edges(e,*G_mult_ptr[act_level])
{//forall
s_node = e->source();
t_node = e->target();
s_sun_node = (*A_mult_ptr[act_level])[s_node].get_dedicated_sun_node();
t_sun_node = (*A_mult_ptr[act_level])[t_node].get_dedicated_sun_node();
if( s_sun_node != t_sun_node) //a inter solar system edge
{//if
high_level_sun_s = (*A_mult_ptr[act_level])[s_sun_node].get_higher_level_node();
high_level_sun_t = (*A_mult_ptr[act_level])[t_sun_node].get_higher_level_node();
//create new edge in *G_mult_ptr[act_level+1]
e_new = G_mult_ptr[act_level+1]->newEdge(high_level_sun_s,high_level_sun_t);
(*E_mult_ptr[act_level])[e].set_higher_level_edge(e_new);
inter_solar_system_edges.pushBack(e);
}//if
}//forall
//init new_edgelength calculate the values of new_edgelength and the lambda Lists
new_edgelength.init(*G_mult_ptr[act_level+1]);
forall_listiterators(edge, e_ptr, inter_solar_system_edges)
{//forall
s_node = (*e_ptr)->source();
t_node = (*e_ptr)->target();
s_sun_node = (*A_mult_ptr[act_level])[s_node].get_dedicated_sun_node();
t_sun_node = (*A_mult_ptr[act_level])[t_node].get_dedicated_sun_node();
length_e = (*E_mult_ptr[act_level])[*e_ptr].get_length();
length_s_edge =(*A_mult_ptr[act_level])[s_node].get_dedicated_sun_distance();
length_t_edge =(*A_mult_ptr[act_level])[t_node].get_dedicated_sun_distance();
newlength = length_s_edge + length_e + length_t_edge;
//set new edge_length in *G_mult_ptr[act_level+1]
e_new = (*E_mult_ptr[act_level])[*e_ptr].get_higher_level_edge();
new_edgelength[e_new] = newlength;
//create entries in lambda Lists
lambda_s = length_s_edge/newlength;
lambda_t = length_t_edge/newlength;
(*A_mult_ptr[act_level])[s_node].get_lambda_List_ptr()->pushBack(lambda_s);
(*A_mult_ptr[act_level])[t_node].get_lambda_List_ptr()->pushBack(lambda_t);
(*A_mult_ptr[act_level])[s_node].get_neighbour_sun_node_List_ptr()->pushBack(
t_sun_node);
(*A_mult_ptr[act_level])[t_node].get_neighbour_sun_node_List_ptr()->pushBack(
s_sun_node);
}//forall
}
void Multilevel::delete_parallel_edges_and_update_edgelength(
Array<Graph*> &G_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
EdgeArray<double>& new_edgelength,int
act_level)
{
EdgeMaxBucketFunc get_max_index;
EdgeMinBucketFunc get_min_index;
edge e_act, e_save = 0;
Edge f_act;
List<Edge> sorted_edges;
Graph* Graph_ptr = G_mult_ptr[act_level+1];
int save_s_index = 0, save_t_index = 0, act_s_index, act_t_index;
int counter = 1;
//make *G_mult_ptr[act_level+1] undirected
makeSimpleUndirected(*G_mult_ptr[act_level+1]);
//sort the List sorted_edges
forall_edges(e_act,*Graph_ptr)
{
f_act.set_Edge(e_act,Graph_ptr);
sorted_edges.pushBack(f_act);
}
sorted_edges.bucketSort(0,Graph_ptr->numberOfNodes()-1,get_max_index);
sorted_edges.bucketSort(0,Graph_ptr->numberOfNodes()-1,get_min_index);
//now parallel edges are consecutive in sorted_edges
forall_listiterators(Edge, EdgeIterator,sorted_edges)
{//for
e_act = (*EdgeIterator).get_edge();
act_s_index = e_act->source()->index();
act_t_index = e_act->target()->index();
if(EdgeIterator != sorted_edges.begin())
{//if
if( (act_s_index == save_s_index && act_t_index == save_t_index) ||
(act_s_index == save_t_index && act_t_index == save_s_index) )
{
new_edgelength[e_save] += new_edgelength[e_act];
Graph_ptr->delEdge(e_act);
counter++;
}
else
{
if (counter > 1)
{
new_edgelength[e_save] /= counter;
counter = 1;
}
save_s_index = act_s_index;
save_t_index = act_t_index;
e_save = e_act;
}
}//if
else //first edge
{
save_s_index = act_s_index;
save_t_index = act_t_index;
e_save = e_act;
}
}//for
//treat special case (last edges were multiple edges)
if(counter >1)
new_edgelength[e_save] /= counter;
//init *E_mult_ptr[act_level+1] and import EdgeAttributes
E_mult_ptr[act_level+1]->init(*G_mult_ptr[act_level+1]);
forall_edges(e_act,*Graph_ptr)
(*E_mult_ptr[act_level+1])[e_act].set_length(new_edgelength[e_act]);
}
void Multilevel::find_initial_placement_for_level(
int level,
int init_placement_way,
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr)
{
List<node> pm_nodes;
set_initial_positions_of_sun_nodes(level, G_mult_ptr, A_mult_ptr);
set_initial_positions_of_planet_and_moon_nodes(level, init_placement_way, G_mult_ptr,
A_mult_ptr, E_mult_ptr, pm_nodes);
set_initial_positions_of_pm_nodes(level, init_placement_way, A_mult_ptr,
E_mult_ptr, pm_nodes);
}
void Multilevel::set_initial_positions_of_sun_nodes(
int level,
Array<Graph*> &G_mult_ptr,
Array<NodeArray <NodeAttributes>*> &A_mult_ptr)
{
node v_high, v_act;
DPoint new_pos;
forall_nodes(v_high,*G_mult_ptr[level+1])
{
v_act = (*A_mult_ptr[level+1])[v_high].get_lower_level_node();
new_pos = (*A_mult_ptr[level+1])[v_high].get_position();
(*A_mult_ptr[level])[v_act].set_position(new_pos);
(*A_mult_ptr[level])[v_act].place();
}
}
void Multilevel::set_initial_positions_of_planet_and_moon_nodes(
int level,
int init_placement_way,
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
List<node>& pm_nodes)
{
double lambda, dedicated_sun_distance;
int node_type;
node v, v_adj, dedicated_sun;
edge e;
DPoint new_pos,dedicated_sun_pos, adj_sun_pos;
List<DPoint> L;
ListIterator<double> lambdaIterator;
create_all_placement_sectors(G_mult_ptr,A_mult_ptr,E_mult_ptr,level);
forall_nodes(v,*G_mult_ptr[level])
{//for
node_type = (*A_mult_ptr[level])[v].get_type();
if(node_type == 3)
pm_nodes.pushBack(v);
else if(node_type == 2 || node_type == 4) //a planet_node or moon_node
{//else
L.clear();
dedicated_sun = (*A_mult_ptr[level])[v].get_dedicated_sun_node();
dedicated_sun_pos = (*A_mult_ptr[level])[dedicated_sun].get_position();
dedicated_sun_distance = (*A_mult_ptr[level])[v].get_dedicated_sun_distance();
if(init_placement_way == FMMMLayout::ipmAdvanced)
{
forall_adj_edges(e,v)
{
if(e->source() != v)
v_adj = e->source();
else
v_adj = e->target();
if( ( (*A_mult_ptr[level])[v].get_dedicated_sun_node() ==
(*A_mult_ptr[level])[v_adj].get_dedicated_sun_node() ) &&
( (*A_mult_ptr[level])[v_adj].get_type() != 1 ) &&
( (*A_mult_ptr[level])[v_adj].is_placed() ) )
{
new_pos = calculate_position(dedicated_sun_pos,(*A_mult_ptr[level])
[v_adj].get_position(),dedicated_sun_distance,
(*E_mult_ptr[level])[e].get_length());
L.pushBack(new_pos);
}
}
}
if ((*A_mult_ptr[level])[v].get_lambda_List_ptr()->empty())
{//special case
if(L.empty())
{
new_pos = create_random_pos(dedicated_sun_pos,(*A_mult_ptr[level])
[v].get_dedicated_sun_distance(),
(*A_mult_ptr[level])[v].get_angle_1(),
(*A_mult_ptr[level])[v].get_angle_2());
L.pushBack(new_pos);
}
}//special case
else
{//usual case
lambdaIterator = (*A_mult_ptr[level])[v].get_lambda_List_ptr()->begin();
forall_listiterators(node, adj_sun_ptr,*(*A_mult_ptr[level])[v].
get_neighbour_sun_node_List_ptr())
{
lambda = *lambdaIterator;
adj_sun_pos = (*A_mult_ptr[level])[*adj_sun_ptr].get_position();
new_pos = get_waggled_inbetween_position(dedicated_sun_pos,adj_sun_pos,
lambda);
L.pushBack(new_pos);
if(lambdaIterator != (*A_mult_ptr[level])[v].get_lambda_List_ptr()
->rbegin())
lambdaIterator = (*A_mult_ptr[level])[v].get_lambda_List_ptr()
->cyclicSucc(lambdaIterator);
}
}//usual case
(*A_mult_ptr[level])[v].set_position(get_barycenter_position(L));
(*A_mult_ptr[level])[v].place();
}//else
}//for
}
void Multilevel::create_all_placement_sectors(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int level)
{
node v_high, w_high, sun_node, v, ded_sun;
edge e_high;
List<DPoint> adj_pos;
double angle_1 = 0.0, angle_2 = 0.0, act_angle_1, act_angle_2, next_angle, min_next_angle = 0.0;
DPoint start_pos, end_pos;
int MAX = 10; //the biggest of at most MAX random selected sectors is choosen
int steps;
ListIterator<DPoint> it, next_pos_ptr;
bool first_angle;
forall_nodes(v_high,(*G_mult_ptr[level+1]))
{//forall
//find pos of adjacent nodes
adj_pos.clear();
DPoint v_high_pos ((*A_mult_ptr[level+1])[v_high].get_x(),
(*A_mult_ptr[level+1])[v_high].get_y());
forall_adj_edges(e_high,v_high)
if(!(*E_mult_ptr[level+1])[e_high].is_extra_edge())
{
if(v_high == e_high->source())
w_high = e_high->target();
else
w_high = e_high->source();
DPoint w_high_pos ((*A_mult_ptr[level+1])[w_high].get_x(),
(*A_mult_ptr[level+1])[w_high].get_y());
adj_pos.pushBack(w_high_pos);
}
if(adj_pos.empty()) //easy case
{
angle_1 = 0;
angle_2 = 6.2831853;
}
else if(adj_pos.size() == 1) //special case
{
//create angle_1
start_pos = *adj_pos.begin();
DPoint x_parallel_pos (v_high_pos.m_x + 1, v_high_pos.m_y);
angle_1 = angle(v_high_pos,x_parallel_pos,start_pos);
//create angle_2
angle_2 = angle_1 + Math::pi;
}
else //usual case
{//else
steps = 1;
it = adj_pos.begin();
do
{
//create act_angle_1
start_pos = *it;
DPoint x_parallel_pos (v_high_pos.m_x + 1, v_high_pos.m_y);
act_angle_1 = angle(v_high_pos,x_parallel_pos,start_pos);
//create act_angle_2
first_angle = true;
for(next_pos_ptr = adj_pos.begin();next_pos_ptr.valid();++next_pos_ptr)
{
next_angle = angle(v_high_pos,start_pos,*next_pos_ptr);
if(start_pos != *next_pos_ptr && (first_angle || next_angle <
min_next_angle))
{
min_next_angle = next_angle;
first_angle = false;
}
}
act_angle_2 = act_angle_1 + min_next_angle;
if((it == adj_pos.begin())||((act_angle_2-act_angle_1)>(angle_2-angle_1)))
{
angle_1 = act_angle_1;
angle_2 = act_angle_2;
}
if(it != adj_pos.rbegin())
it = adj_pos.cyclicSucc(it);
steps++;
}
while((steps <= MAX) && (it != adj_pos.rbegin()));
if(angle_1 == angle_2)
angle_2 = angle_1 + Math::pi;
}//else
//import angle_1 and angle_2 to the dedicated suns at level level
sun_node = (*A_mult_ptr[level+1])[v_high].get_lower_level_node();
(*A_mult_ptr[level])[sun_node].set_angle_1(angle_1);
(*A_mult_ptr[level])[sun_node].set_angle_2(angle_2);
}//forall
//import the angle values from the values of the dedicated sun nodes
forall_nodes(v,*G_mult_ptr[level])
{
ded_sun = (*A_mult_ptr[level])[v].get_dedicated_sun_node();
(*A_mult_ptr[level])[v].set_angle_1((*A_mult_ptr[level])[ded_sun].get_angle_1());
(*A_mult_ptr[level])[v].set_angle_2((*A_mult_ptr[level])[ded_sun].get_angle_2());
}
}
void Multilevel::set_initial_positions_of_pm_nodes(
int level,
int init_placement_way,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
List<node>& pm_nodes)
{
double moon_dist, sun_dist, lambda;
node v_adj, sun_node;
edge e;
DPoint sun_pos, moon_pos, new_pos, adj_sun_pos;
List<DPoint> L;
ListIterator<double> lambdaIterator;
forall_listiterators(node,v_ptr,pm_nodes)
{//forall
L.clear();
sun_node = (*A_mult_ptr[level])[*v_ptr].get_dedicated_sun_node();
sun_pos = (*A_mult_ptr[level])[sun_node].get_position();
sun_dist = (*A_mult_ptr[level])[*v_ptr].get_dedicated_sun_distance();
if(init_placement_way == FMMMLayout::ipmAdvanced)
{//if
forall_adj_edges(e,*v_ptr)
{
if(e->source() != *v_ptr)
v_adj = e->source();
else
v_adj = e->target();
if( (!(*E_mult_ptr[level])[e].is_moon_edge()) &&
( (*A_mult_ptr[level])[*v_ptr].get_dedicated_sun_node() ==
(*A_mult_ptr[level])[v_adj].get_dedicated_sun_node() ) &&
( (*A_mult_ptr[level])[v_adj].get_type() != 1 ) &&
( (*A_mult_ptr[level])[v_adj].is_placed() ) )
{
new_pos = calculate_position(sun_pos,(*A_mult_ptr[level])[v_adj].
get_position(),sun_dist,(*E_mult_ptr[level])
[e].get_length());
L.pushBack(new_pos);
}
}
}//if
forall_listiterators(node, moon_node_ptr,*(*A_mult_ptr[level])[*v_ptr].
get_dedicated_moon_node_List_ptr())
{
moon_pos = (*A_mult_ptr[level])[*moon_node_ptr].get_position();
moon_dist = (*A_mult_ptr[level])[*moon_node_ptr].get_dedicated_sun_distance();
lambda = sun_dist/moon_dist;
new_pos = get_waggled_inbetween_position(sun_pos,moon_pos,lambda);
L.pushBack(new_pos);
}
if (!(*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()->empty())
{
lambdaIterator = (*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()->begin();
forall_listiterators(node,adj_sun_ptr,*(*A_mult_ptr[level])[*v_ptr].
get_neighbour_sun_node_List_ptr())
{
lambda = *lambdaIterator;
adj_sun_pos = (*A_mult_ptr[level])[*adj_sun_ptr].get_position();
new_pos = get_waggled_inbetween_position(sun_pos,adj_sun_pos,lambda);
L.pushBack(new_pos);
if(lambdaIterator != (*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()
->rbegin())
lambdaIterator = (*A_mult_ptr[level])[*v_ptr].get_lambda_List_ptr()
->cyclicSucc(lambdaIterator);
}
}
(*A_mult_ptr[level])[*v_ptr].set_position(get_barycenter_position(L));
(*A_mult_ptr[level])[*v_ptr].place();
}//forall
}
inline DPoint Multilevel::create_random_pos(DPoint center,double radius,double angle_1,
double angle_2)
{
const int BILLION = 1000000000;
DPoint new_point;
double rnd = double(randomNumber(1,BILLION)+1)/(BILLION+2);//rand number in (0,1)
double rnd_angle = angle_1 +(angle_2-angle_1)*rnd;
double dx = cos(rnd_angle) * radius;
double dy = sin(rnd_angle) * radius;
new_point.m_x = center.m_x + dx ;
new_point.m_y = center.m_y + dy;
return new_point;
}
inline DPoint Multilevel::get_waggled_inbetween_position(DPoint s, DPoint t, double lambda)
{
const double WAGGLEFACTOR = 0.05;
const int BILLION = 1000000000;
DPoint inbetween_point;
inbetween_point.m_x = s.m_x + lambda*(t.m_x - s.m_x);
inbetween_point.m_y = s.m_y + lambda*(t.m_y - s.m_y);
double radius = WAGGLEFACTOR * (t-s).norm();
double rnd = double(randomNumber(1,BILLION)+1)/(BILLION+2);//rand number in (0,1)
double rand_radius = radius * rnd;
return create_random_pos(inbetween_point,rand_radius,0,6.2831853);
}
inline DPoint Multilevel::get_barycenter_position(List<DPoint>& L)
{
DPoint sum (0,0);
DPoint barycenter;
forall_listiterators(DPoint, act_point_ptr,L)
sum = sum + (*act_point_ptr);
barycenter.m_x = sum.m_x/L.size();
barycenter.m_y = sum.m_y/L.size();
return barycenter;
}
inline DPoint Multilevel::calculate_position(DPoint P, DPoint Q, double dist_P, double dist_Q)
{
double dist_PQ = (P-Q).norm();
double lambda = (dist_P + (dist_PQ - dist_P - dist_Q)/2)/dist_PQ;
return get_waggled_inbetween_position(P,Q,lambda);
}
void Multilevel::delete_multilevel_representations(
Array<Graph*> &G_mult_ptr,
Array<NodeArray<NodeAttributes>*> &A_mult_ptr,
Array<EdgeArray<EdgeAttributes>*> &E_mult_ptr,
int max_level)
{
for(int i=1; i<= max_level; i++)
{
delete G_mult_ptr[i];
delete A_mult_ptr[i];
delete E_mult_ptr[i];
}
}
double Multilevel::angle(DPoint& P, DPoint& Q, DPoint& R)
{
double dx1 = Q.m_x - P.m_x;
double dy1 = Q.m_y - P.m_y;
double dx2 = R.m_x - P.m_x;
double dy2 = R.m_y - P.m_y;
double fi;//the angle
if ((dx1 == 0 && dy1 == 0) || (dx2 == 0 && dy2 == 0))
cout<<"Multilevel::angle()"<<endl;
double norm = (dx1*dx1+dy1*dy1)*(dx2*dx2+dy2*dy2);
double cosfi = (dx1*dx2+dy1*dy2) / sqrt(norm);
if (cosfi >= 1.0 ) fi = 0;
if (cosfi <= -1.0 ) fi = Math::pi;
else
{
fi = acos(cosfi);
if (dx1*dy2 < dy1*dx2) fi = -fi;
if (fi < 0) fi += 2*Math::pi;
}
return fi;
}
}//namespace ogdf
|