1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/*
* $Revision: 2549 $
*
* last checkin:
* $Author: gutwenger $
* $Date: 2012-07-04 23:09:19 +0200 (Mi, 04. Jul 2012) $
***************************************************************/
/** \file
* \brief Implementation of memory manager for more efficiently
* allocating small pieces of memory
*
* \author Carsten Gutwenger
*
* \par License:
* This file is part of the Open Graph Drawing Framework (OGDF).
*
* \par
* Copyright (C)<br>
* See README.txt in the root directory of the OGDF installation for details.
*
* \par
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 or 3 as published by the Free Software Foundation;
* see the file LICENSE.txt included in the packaging of this file
* for details.
*
* \par
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \par
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
* \see http://www.gnu.org/copyleft/gpl.html
***************************************************************/
#include "../../basic/basic.h"
namespace ogdf {
struct PoolMemoryAllocator::PoolVector
{
MemElemPtr m_pool[ePoolVectorLength];
PoolVector *m_prev;
};
struct PoolMemoryAllocator::PoolElement
{
PoolVector *m_currentVector;
MemElemPtr m_restHead;
MemElemPtr m_restTail;
__int16 m_index;
__int16 m_restCount;
};
struct PoolMemoryAllocator::BlockChain
{
char m_fill[eBlockSize-sizeof(void*)];
BlockChain *m_next;
};
PoolMemoryAllocator::PoolElement PoolMemoryAllocator::s_pool[eTableSize];
PoolMemoryAllocator::MemElemPtr PoolMemoryAllocator::s_freeVectors;
PoolMemoryAllocator::BlockChainPtr PoolMemoryAllocator::s_blocks;
#ifdef OGDF_MEMORY_POOL_NTS
PoolMemoryAllocator::MemElemPtr PoolMemoryAllocator::s_tp[eTableSize];
#elif defined(OGDF_NO_COMPILER_TLS)
CriticalSection *PoolMemoryAllocator::s_criticalSection;
pthread_key_t PoolMemoryAllocator::s_tpKey;
#else
CriticalSection *PoolMemoryAllocator::s_criticalSection;
OGDF_DECL_THREAD PoolMemoryAllocator::MemElemPtr PoolMemoryAllocator::s_tp[eTableSize];
#endif
void PoolMemoryAllocator::init()
{
#ifndef OGDF_MEMORY_POOL_NTS
#ifdef OGDF_NO_COMPILER_TLS
pthread_key_create(&s_tpKey,NULL);
#endif
s_criticalSection = new CriticalSection(500);
#endif
initThread();
}
void PoolMemoryAllocator::initThread() {
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
pthread_setspecific(s_tpKey,calloc(eTableSize,sizeof(MemElemPtr)));
#endif
}
void PoolMemoryAllocator::cleanup()
{
BlockChainPtr p = s_blocks;
while(p != 0) {
BlockChainPtr pNext = p->m_next;
free(p);
p = pNext;
}
#ifndef OGDF_MEMORY_POOL_NTS
#ifdef OGDF_NO_COMPILER_TLS
pthread_key_delete(s_tpKey);
#endif
delete s_criticalSection;
#endif
}
bool PoolMemoryAllocator::checkSize(size_t nBytes) {
return nBytes < eTableSize;
}
void *PoolMemoryAllocator::allocate(size_t nBytes) {
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
MemElemPtr *pFreeBytes = ((MemElemPtr*)pthread_getspecific(s_tpKey))+nBytes;
#else
MemElemPtr *pFreeBytes = s_tp+nBytes;
#endif
if (OGDF_LIKELY(*pFreeBytes != 0)) {
MemElemPtr p = *pFreeBytes;
*pFreeBytes = p->m_next;
return p;
} else {
return fillPool(*pFreeBytes,__uint16(nBytes));
}
}
void PoolMemoryAllocator::deallocate(size_t nBytes, void *p) {
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
MemElemPtr *pFreeBytes = ((MemElemPtr*)pthread_getspecific(s_tpKey))+nBytes;
#else
MemElemPtr *pFreeBytes = s_tp+nBytes;
#endif
MemElemPtr(p)->m_next = *pFreeBytes;
*pFreeBytes = MemElemPtr(p);
}
void PoolMemoryAllocator::deallocateList(size_t nBytes, void *pHead, void *pTail) {
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
MemElemPtr *pFreeBytes = ((MemElemPtr*)pthread_getspecific(s_tpKey))+nBytes;
#else
MemElemPtr *pFreeBytes = s_tp+nBytes;
#endif
MemElemPtr(pTail)->m_next = *pFreeBytes;
*pFreeBytes = MemElemPtr(pHead);
}
PoolMemoryAllocator::MemElemExPtr
PoolMemoryAllocator::collectGroups(
__uint16 nBytes,
MemElemPtr &pRestHead,
MemElemPtr &pRestTail,
int &nRest)
{
int n = slicesPerBlock(nBytes);
pRestHead = 0;
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
MemElemPtr p = ((MemElemPtr*)pthread_getspecific(s_tpKey))[nBytes];
#else
MemElemPtr p = s_tp[nBytes];
#endif
MemElemExPtr pStart = 0, pLast = 0;
while(p != 0)
{
int i = 0;
MemElemPtr pHead = p, pTail;
do {
pTail = p;
p = p->m_next;
} while(++i < n && p != 0);
pTail->m_next = 0;
if(i == n) {
if(pStart == 0)
pStart = MemElemExPtr(pHead);
else
pLast->m_down = MemElemExPtr(pHead);
pLast = MemElemExPtr(pHead);
} else {
pRestHead = pHead;
pRestTail = pTail;
nRest = i;
}
}
if (pLast)
pLast->m_down = 0;
return pStart;
}
void PoolMemoryAllocator::flushPoolSmall(__uint16 nBytes)
{
int n = slicesPerBlock(nBytes < eMinBytes ? int(eMinBytes) : int(nBytes));
PoolElement &pe = s_pool[nBytes];
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
MemElemPtr p = ((MemElemPtr*)pthread_getspecific(s_tpKey))[nBytes];
#else
MemElemPtr p = s_tp[nBytes];
#endif
if(pe.m_restHead != 0) {
pe.m_restTail->m_next = p;
p = pe.m_restHead;
pe.m_restHead = 0;
}
while(p != 0)
{
int i = 0;
MemElemPtr pHead = p, pTail;
do {
pTail = p;
p = p->m_next;
} while(++i < n && p != 0);
if(i == n) {
incVectorSlot(pe);
pe.m_currentVector->m_pool[pe.m_index] = pHead;
} else {
pe.m_restHead = pHead;
pe.m_restTail = pTail;
pe.m_restCount = i;
}
}
}
void PoolMemoryAllocator::incVectorSlot(PoolElement &pe)
{
if(pe.m_currentVector == 0 || ++pe.m_index == ePoolVectorLength) {
if(s_freeVectors == 0)
s_freeVectors = allocateBlock(sizeof(PoolVector));
PoolVector *pv = (PoolVector *)s_freeVectors;
s_freeVectors = MemElemPtr(pv)->m_next;
pe.m_currentVector = pv;
pe.m_index = 0;
}
}
void PoolMemoryAllocator::flushPool(__uint16 nBytes)
{
#ifndef OGDF_MEMORY_POOL_NTS
if(nBytes >= sizeof(MemElemEx)) {
MemElemPtr pRestHead, pRestTail;
int nRest;
MemElemExPtr pStart = collectGroups(nBytes, pRestHead, pRestTail, nRest);
s_criticalSection->enter();
PoolElement &pe = s_pool[nBytes];
while(pStart != 0) {
incVectorSlot(pe);
pe.m_currentVector->m_pool[pe.m_index] = MemElemPtr(pStart);
pStart = pStart->m_down;
}
if(pRestHead != 0) {
int n = slicesPerBlock(nBytes);
pRestTail->m_next = pe.m_restTail;
int nTotal = nRest + pe.m_restCount;
if(nTotal >= n) {
MemElemPtr p = pe.m_restHead;
int i = n-nRest;
while(--i > 0)
p = p->m_next;
pe.m_restHead = p->m_next;
pe.m_restCount = nTotal-n;
incVectorSlot(pe);
pe.m_currentVector->m_pool[pe.m_index] = pRestHead;
} else {
pe.m_restHead = pRestHead;
pe.m_restCount = nTotal;
}
}
s_criticalSection->leave();
} else {
s_criticalSection->enter();
flushPoolSmall(nBytes);
s_criticalSection->leave();
}
#endif
}
void PoolMemoryAllocator::flushPool()
{
#ifndef OGDF_MEMORY_POOL_NTS
for(__uint16 nBytes = 1; nBytes < eTableSize; ++nBytes) {
#ifdef OGDF_NO_COMPILER_TLS
MemElemPtr p = ((MemElemPtr*)pthread_getspecific(s_tpKey))[nBytes];
#else
MemElemPtr p = s_tp[nBytes];
#endif
if(p != 0)
flushPool(nBytes);
}
#endif
}
void *PoolMemoryAllocator::fillPool(MemElemPtr &pFreeBytes, __uint16 nBytes)
{
#ifdef OGDF_MEMORY_POOL_NTS
pFreeBytes = allocateBlock(nBytes);
#else
s_criticalSection->enter();
PoolElement &pe = s_pool[nBytes];
if(pe.m_currentVector != 0) {
pFreeBytes = pe.m_currentVector->m_pool[pe.m_index];
if(--pe.m_index < 0) {
PoolVector *pV = pe.m_currentVector;
pe.m_currentVector = pV->m_prev;
pe.m_index = ePoolVectorLength-1;
MemElemPtr(pV)->m_next = s_freeVectors;
s_freeVectors = MemElemPtr(pV);
}
s_criticalSection->leave();
} else {
s_criticalSection->leave();
pFreeBytes = allocateBlock(nBytes);
}
#endif
MemElemPtr p = pFreeBytes;
pFreeBytes = p->m_next;
return p;
}
// __asm __volatile ("":::"memory") GLIBC
PoolMemoryAllocator::MemElemPtr
PoolMemoryAllocator::allocateBlock(__uint16 nBytes)
{
if(nBytes < eMinBytes)
nBytes = eMinBytes;
MemElemPtr pBlock = (MemElemPtr) malloc(eBlockSize);
// we altogether create nSlices slices
int nWords;
int nSlices = slicesPerBlock(nBytes,nWords);
MemElemPtr pHead = MemElemPtr(pBlock);
BlockChainPtr(pBlock)->m_next = s_blocks;
s_blocks = BlockChainPtr(pBlock);
do {
pBlock = pBlock->m_next = pBlock+nWords;
} while(--nSlices > 1);
MemElemPtr(pBlock)->m_next = 0;
return pHead;
}
size_t PoolMemoryAllocator::memoryAllocatedInBlocks()
{
#ifndef OGDF_MEMORY_POOL_NTS
s_criticalSection->enter();
#endif
size_t nBlocks = 0;
for (BlockChainPtr p = s_blocks; p != 0; p = p->m_next)
++nBlocks;
#ifndef OGDF_MEMORY_POOL_NTS
s_criticalSection->leave();
#endif
return nBlocks * eBlockSize;
}
size_t PoolMemoryAllocator::memoryInGlobalFreeList()
{
#ifndef OGDF_MEMORY_POOL_NTS
s_criticalSection->enter();
#endif
size_t bytesFree = 0;
for (int sz = 1; sz < eTableSize; ++sz)
{
const PoolElement &pe = s_pool[sz];
PoolVector *pv = pe.m_currentVector;
for(; pv != 0; pv = pv->m_prev)
bytesFree += ePoolVectorLength*sz;
if(pe.m_restHead != 0)
bytesFree += pe.m_restCount;
}
#ifndef OGDF_MEMORY_POOL_NTS
s_criticalSection->leave();
#endif
return bytesFree;
}
size_t PoolMemoryAllocator::memoryInThreadFreeList()
{
size_t bytesFree = 0;
for (int sz = 1; sz < eTableSize; ++sz)
{
#if !defined(OGDF_MEMORY_POOL_NTS) && defined(OGDF_NO_COMPILER_TLS)
MemElemPtr p = ((MemElemPtr*)pthread_getspecific(s_tpKey))[sz];
#else
MemElemPtr p = s_tp[sz];
#endif
for(; p != 0; p = p->m_next)
bytesFree += sz;
}
return bytesFree;
}
}
|