1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
#!/usr/bin/python
# -- coding: utf-8 --
"""
Copyright 2022. Uecker Lab, University Medical Center Goettingen.
Authors:
2022 Martin Schilling (martin.schilling@med.uni-goettingen.de)
2022 Nick Scholand (scholand@tugraz.at)
DESCRIPTION :
This script takes an SVG file as an input, analyses the paths of objects,
which can consist of horizontal, vertical, diagonal and cubic spline
transformations, splits these transformations up into cubic Hermite splines
and creates a CFL file for use with the BART phantom command line tool.
"""
import os
import numpy as np
import argparse
import sys
if 'BART_TOOLBOX_PATH' in os.environ and os.path.exists(os.environ['BART_TOOLBOX_PATH']):
sys.path.insert(0, os.path.join(os.environ['BART_TOOLBOX_PATH'], 'python'))
elif 'TOOLBOX_PATH' in os.environ and os.path.exists(os.environ['TOOLBOX_PATH']):
sys.path.insert(0, os.path.join(os.environ['TOOLBOX_PATH'], 'python'))
else:
raise RuntimeError("BART_TOOLBOX_PATH is not set correctly!")
import cfl
DBLEVEL = 0
def read_svg(svg_input, scale_flag=True):
"""
Reads a given svg file to extract parameters of paths.
:param str svg_input: File path to input svg.
:param bool scale_coords: Boolean for scaling coordinates
:returns: List of lists for paths. Element: [object_id, color, transforms]
:rtype: list
"""
paths_list = []
prev_key_list, points_list = [], []
readout = False
with open (svg_input, 'rt', encoding="utf8", errors='ignore') as input:
for line in input:
if "<path" in line:
readout = True
object_id="000"
color = "000000"
prev_keys=[]
points=[]
if readout:
if "style=" in line:
if "stroke:#" in line:
color = line.split("stroke:#")[1][:6]
if "fill:#" in line:
color = line.split("fill:#")[1][:6]
if " d=" in line:
prev_keys, points = analyse_d_string(line.split('"')[1])
if "id=" in line:
object_id = line.split('"')[1]
# end of parameters
if "/>" in line:
readout = False
prev_key_list.append(prev_keys)
points_list.append(points)
paths_list.append([object_id, color])
input.close()
if scale_flag:
scale_coords(points_list, center=[0,0], norm=1.8)
for num,(k,p) in enumerate(zip(prev_key_list,points_list)):
if 0 != len(k):
transforms = get_transforms(k,p)
paths_list[num].append(transforms)
else:
paths_list[num].append([])
return paths_list
def scale_coords(coords_list, center=[187.5, 125], norm=350):
"""
Scale coordinates to a given center with a maximal norm.
:param list coords_list: List of lists of coordinates. Each list belongs to a series of control points.
:param list center: Coordinates of new center
:param int norm: Maximal value for width and height
"""
x_min = coords_list[0][0][0]
x_max = coords_list[0][0][0]
y_min = coords_list[0][0][1]
y_max = coords_list[0][0][1]
# determine maximal and minimal x- and y-values
for cs in coords_list:
for c in cs:
x_max = c[0] if c[0] > x_max else x_max
x_min = c[0] if c[0] < x_min else x_min
y_max = c[1] if c[1] > y_max else y_max
y_min = c[1] if c[1] < y_min else y_min
# transfer values to new center
x_trans = (x_max + x_min) / 2
y_trans = (y_max + y_min) / 2
# normalization factor of coordinates as ratio of norm and max([width,height])
norm_factor = norm / max([np.abs(x_max-x_min), np.abs(y_max-y_min)])
for cs in coords_list:
for c in cs:
c[0] = (c[0] - x_trans) * norm_factor + center[0]
c[1] = (c[1] - y_trans) * norm_factor + center[1]
def try_float(string):
# Function for trying a string for conversion to float.
try:
f = float(string)
return True
except ValueError:
return False
def analyse_d_string(d_string):
"""
Analyse string of 'd' argument of path. The function returns the signal transform parameters
and a list of coordinates of the control points.
:param str d_string: Complete string contained in the 'd' parameter of a path.
:returns: tuple(transform_keys, coordinates)
WHERE
list transform_keys is list of lower case signal characters for transformations
list coordinates is list of absolute coordinates of control points
"""
content = d_string.split()
prev_key = None
points = []
transf_keys = []
cspline = []
count = 0
x_origin, y_origin = 0, 0
for num,section in enumerate(content):
if len(section.split(",")) > 1 or try_float(section):
# keys before coordinates signal new transformation,
# lower case for relative, upper case for absolute coordinates
special_keys = ['c','C','m','M', 'l', 'L']
# deal with exception, that 'm'/'M' keys may be followed by diagonal
# transformation ('l' key) without explicit key
if len(section.split(",")) > 1 and prev_key not in special_keys:
prev_key = "l"
if "c" == prev_key or "C" == prev_key:
count += 1
if 3 == count:
cspline.append([cspline[1][0]+cspline[1][0]-cspline[0][0],cspline[1][1]+cspline[1][1]-cspline[0][1]])
if "c" == prev_key:
# relative reference point
x_origin += float(content[num].split(",")[0])
y_origin += float(content[num].split(",")[1])
if "C" == prev_key:
# absolute reference point
x_origin = float(content[num].split(",")[0])
y_origin = float(content[num].split(",")[1])
# append intermediate control points
points.append([cspline[0][0], cspline[0][1]])
transf_keys.append(prev_key)
points.append([cspline[1][0], cspline[1][1]])
transf_keys.append(prev_key)
count = 0
cspline = []
else:
if "c" == prev_key:
cspline.append([x_origin+float(content[num].split(",")[0]), y_origin+float(content[num].split(",")[1])])
if "C" == prev_key:
cspline.append([float(content[num].split(",")[0]), float(content[num].split(",")[1])])
else:
count = 0
# start of path
if "m" == prev_key or "M" == prev_key:
x_origin = float(content[num].split(",")[0])
y_origin = float(content[num].split(",")[1])
# horizontal transformation
if "h" == prev_key:
x_origin += float(content[num])
if "H" == prev_key:
x_origin = float(content[num])
# vertical transformation
if "v" == prev_key:
y_origin += float(content[num])
if "V" == prev_key:
y_origin = float(content[num])
# diagonal transformation
if "l" == prev_key:
x_origin += float(content[num].split(",")[0])
y_origin += float(content[num].split(",")[1])
if "L" == prev_key:
x_origin = float(content[num].split(",")[0])
y_origin = float(content[num].split(",")[1])
if 0 == count:
points.append([x_origin, y_origin])
transf_keys.append(prev_key.lower())
if 'M' == prev_key:
prev_key = 'L'
if 'm' == prev_key:
prev_key = 'l'
else:
prev_key = section
return transf_keys, points
def controlpoints2cspline(bezier_points):
"""
Translate four input control points into a cubic Hermite spline format suitable for BART.
:param list bezier_points: List of four control points in format [p1,p2,p3,p4] with p_i=[x_i,y_i]
:returns: Parameters for cubic Hermite spline [x_parameters, y_parameters]
:rtype: list
"""
bezier_cspline = [[1,-3,0,0],[0,3,0,0],[0,0,0,-3],[0,0,1,3]]
bezier_x = [p[0] for p in bezier_points]
bezier_y = [p[1] for p in bezier_points]
bezier = [bezier_x, bezier_y]
cspline = [[0,0] for i in range(4)]
for num, c in enumerate(bezier):
for i in range(4):
for j in range(4):
cspline[i][num] += bezier_cspline[j][i] * bezier[num][j]
cspline_x = [p[0] for p in cspline]
cspline_y = [p[1] for p in cspline]
return [cspline_x, cspline_y]
def get_transforms(keys, points):
"""
Create separate transformations from given lists of keys and coordinates.
The transformations have the form [[x_transforms],[y_transforms]] in the cubic Hermite spline format.
:param list keys: List of signal characters for path transformations [key1, key2, ...]
:param list points: List of coordinates [[x1,y1], [x2,y2], ...]
:returns: Transformations in cubic Hermite spline format
:rtype: list
"""
transforms = []
for num,(k,p) in enumerate(zip(keys,points)):
if 'h' == k:
transforms.append([[points[num-1][0],0.,p[0],-0.],[p[1],0.,p[1],-0.]])
if 'v' == k:
transforms.append([[p[0],0.,p[0],-0.],[points[num-1][1],0.,p[1],-0.]])
if 'l' == k:
transforms.append([[points[num-1][0],0.,p[0],-0.],[points[num-1][1],0.,p[1],-0.]])
if num+1 < len(points) and 'c' == k:
# non-trivial B-spline
if 'c' == keys[num-1] and 'c' == keys[num+1]:
keys[num+1] = None
transforms.append(controlpoints2cspline(points[num-2:num+2]))
# trivial B-spline
elif 'c' != keys[num-1] and 'c' != keys[num+1]:
transforms.append([[points[num-1][0],0.,p[0],-0.],[points[num-1][1],0.,p[1],-0.]])
return transforms
def format_transforms(transforms, object_id, filename, output_file):
"""
Format transforms for insertion into /bart/src/geom/logo.c
:param list transform: List of transformations in cubic Hermite spline format
:param list object_id: List of object ids for indexing transformations
:param str filename: Name of struct
:param str output_file: File path to output text file
"""
total_transforms = sum([len(t) for t in transforms])
with open (output_file, 'w', encoding="utf8", errors='ignore') as output:
output.write("//Replace in bart/src/geom/logo.c > bart_logo and adjust bart/src/geom/logo.h\n\n")
output.write("const double "+filename+"["+str(total_transforms)+"][2][4] = {\n")
for num, transform in enumerate(transforms):
output.write("\t//"+str(object_id[num])+"\n")
for enum,t in enumerate(transform):
x_string = str(t[0][0])+", "+str(t[0][1])+", "+str(t[0][2])+", "+str(t[0][3])
y_string = str(t[1][0])+", "+str(t[1][1])+", "+str(t[1][2])+", "+str(t[1][3])
# current implementation in BART, likely to change to x_string, y_string in the future
output.write("\t{ { "+y_string+" }, { "+x_string+" } },\n")
output.write("};\n")
def transform2polystruct(transforms, id_color, output_file):
"""
Create a polystruct for a given set of transformations and append it to output file.
Can replace code in bart/src/simu/phantom.c > calc_bart
:param list transforms: List of transformations in [[x_transforms],[y_transforms]] format
:param list id_color: List of fill colors of individual objects
:param str output_file: File path to output text file
"""
total_transforms = sum([len(t) for t in transforms])
with open (output_file, 'a', encoding="utf8", errors='ignore') as output:
output.write("\tint N = "+str(total_transforms)+";\n")
output.write("\tdouble points[N * 11][2];\n")
output.write("\n")
output.write("\tstruct poly poly = {\n\t\tkspace,\n\t\tcoeff,\n\t\tpopts->large_sens,\n\t\t"+str(len(transforms))+",\n\t\t&(struct poly1[]){\n")
array_position = 0
for num, transform in enumerate(transforms):
output.write("\t\t\t{ "+str(len(transform)*11)+" , "+str(id_color[num])+", ARRAY_SLICE(points, "+str(array_position*11)+", "+str((array_position+len(transform))*11) +") },\n")
array_position += len(transform)
output.write("\t\t}\n")
output.write("\t};")
output.close()
def assign_color_id(colors):
"""
Extract color IDs from hex colors
:param list colors: List of strings representing the objects colors
:returns: List of Integers representing the objects colors as integer (> 0 !) IDs
:rtype: list
"""
color_values, color_counts = np.unique(colors, return_counts=True)
id_color = [list(color_values).index(i)+1 for i in colors]
return id_color
# Save geometry data in numpy array
# coord -> [segment, cp_set:[x,y], cp_coord] with control points (cp)
# meta -> [path index, number of segments, color of path]
def save2cfl(new_transforms, new_colors, cfl_output):
coord = []
meta = []
ind_path = 0
for sub_array in new_transforms:
ind_seg = 0
for path in sub_array:
path_array = np.array(path)
coord.append(path_array)
ind_seg += 1
meta.append(np.array([ind_path, ind_seg, new_colors[ind_path]]))
ind_path += 1
coord = np.array(coord)
meta = np.array(meta)
if (2 <= DBLEVEL):
print("Coord Dims:")
print(np.shape(coord))
print("Meta Dims:")
print(np.shape(meta))
print("Meta:")
print(meta)
cfl.writemulticfl(cfl_output, np.array([coord, meta], dtype=object))
def main(svg_input, text_output, output):
"""
Extract parameters of paths from SVG file and write code block into txt file,
which is suitable for bart/src/simu/shepplogan.c > calc_bart and bart/src/geom/logo.c.
:param str svg_input: File path to input SVG file
:param str cfl: File path to output cfl file. Default: <svg_name>.{cfl,hdr}
"""
if (text_output):
text_filename = output+".txt"
path_objects = read_svg(svg_input)
object_ids = [obj[0] for obj in path_objects]
colors = [obj[1] for obj in path_objects]
transforms = [obj[2] for obj in path_objects]
# Sort paths by color (=: grey value in provided SVG file)
id_color = assign_color_id(colors)
new_colors = sorted(id_color)
new_ids = [id for color, id in sorted(zip(id_color,object_ids))]
new_transforms = [trans for color, trans in sorted(zip(id_color,transforms))]
color_values, color_counts = np.unique(new_colors, return_counts=True)
if (2 <= DBLEVEL):
print("Distribution of colors:")
print("Value:\t", color_values)
print("Number:\t", color_counts)
save2cfl(new_transforms, new_colors, output)
if (1 <= DBLEVEL):
print("Created files:")
print(output+".{cfl,hdr}")
if (text_output):
format_transforms(new_transforms, new_ids, output, text_filename)
transform2polystruct(new_transforms, new_colors, text_filename)
if (1 <= DBLEVEL):
print(output+".txt")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Script to extract control points of cubic Hermite splines from SVG file to CFL format.")
parser.add_argument('input', type=str, help="Input SVG file")
parser.add_argument('output', type=str, help="Output CFL filename")
parser.add_argument('-d', '--db', default=-1, type=int, help="Specify debug value for additional information [default: 0]")
# Internal option for more complicated objects with multi component paths (example: BRAIN geometry)
# Requires manual tuning and is therefore hidden for simplicity
parser.add_argument('-t', action='store_true', help=argparse.SUPPRESS)
args = parser.parse_args()
if ("BART_DEBUG_LEVEL" in os.environ):
if (-1 != args.db):
print("A local BART_DEBUG_LEVEL variable exists! It will be overwritten by -d input!\n")
DBLEVEL = int(os.environ["BART_DEBUG_LEVEL"])
elif ("DEBUG_LEVEL" in os.environ):
DBLEVEL = int(os.environ["DEBUG_LEVEL"])
if (-1 != args.db):
DBLEVEL = args.db
main(args.input, args.t, args.output)
|