1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#include "misc/misc.h"
#include "num/polynom.h"
#include "utest.h"
static bool test_polynom_eval(void)
{
const complex double coeff[3] = { 1., 0., 1. };
bool ok = true;
ok &= (1. == polynom_eval(0., 2, coeff));
ok &= (2. == polynom_eval(1., 2, coeff));
ok &= (2. == polynom_eval(-1., 2, coeff));
return ok;
}
UT_REGISTER_TEST(test_polynom_eval);
static bool array_eq(int N, const complex double c1[N], const complex double c2[N], double eps)
{
return (0 == N) ? true : ((cabs(c1[0] - c2[0]) <= eps) && array_eq(N - 1, c1 + 1, c2 + 1, eps));
}
static bool test_polynom_derivative(void)
{
const complex double coeff[3] = { 1., 0., 1. };
complex double coeff2[2];
polynom_derivative(2, coeff2, coeff);
return array_eq(2, coeff2, (const complex double[]){ 0., 2. }, 0.);
}
UT_REGISTER_TEST(test_polynom_derivative);
static bool test_polynom_integral(void)
{
const complex double coeff[3] = { 1., 0., 1. };
complex double coeff2[2];
complex double coeff3[3];
polynom_derivative(2, coeff2, coeff);
polynom_integral(1, coeff3, coeff2);
return ((0. == coeff3[1]) && (1. == coeff3[2]));
}
UT_REGISTER_TEST(test_polynom_integral);
static bool test_polynom_integrate(void)
{
const complex double coeff2[2] = { 0., 1. };
return (0.5 == polynom_integrate(0., 1., 1, coeff2));
}
UT_REGISTER_TEST(test_polynom_integrate);
static bool test_polynom_from_roots1(void)
{
const complex double roots[2] = { 1., -2.i };
// (x - 1.) * (x + 2.i) == x^2 + (-1 + 2.i) x -2i.
const complex double coeff0[3] = { -2.i, -1. + 2.i, 1. };
complex double coeff[3];
polynom_from_roots(2, coeff, roots);
return array_eq(3, coeff0, coeff, 0.);
}
UT_REGISTER_TEST(test_polynom_from_roots1);
static bool test_polynom_from_roots(void)
{
const complex double roots[3] = { 1., 2., 3. };
complex double coeff[4];
polynom_from_roots(3, coeff, roots);
bool ok = true;
for (unsigned int i = 0; i < ARRAY_SIZE(roots); i++)
ok &= (0. == polynom_eval(roots[i], 3, coeff));
complex double prod = 1.;
for (unsigned int i = 0; i < ARRAY_SIZE(roots); i++)
prod *= -roots[i];
ok &= (prod == polynom_eval(0., 3, coeff));
return ok;
}
UT_REGISTER_TEST(test_polynom_from_roots);
static bool test_polynom_scale(void)
{
const complex double coeff[3] = { 1., 0., 1. };
complex double coeff2[3];
polynom_scale(2, coeff2, 2., coeff);
return (5. == polynom_eval(1., 2, coeff2));
}
UT_REGISTER_TEST(test_polynom_scale);
static bool test_polynom_shift(void)
{
const complex double coeff[3] = { 1., 0., 1. };
// 1. + (x + 1)^2 = 2 + 2 * x + x^2
complex double coeff2[3];
polynom_shift(2, coeff2, 1., coeff);
return array_eq(3, coeff2, (const complex double[]){ 2., 2., 1. }, 0.);
}
UT_REGISTER_TEST(test_polynom_shift);
static bool test_quadratic_formula(void)
{
const complex double roots[2] = { 1., -2.i };
// (x - 1.) * (x + 2.i) == x^2 + (-1 + 2.i) x -2i.
complex double coeff[3] = { -2.i, -1. + 2.i, 1. };
complex double r2[2];
quadratic_formula(r2, coeff);
return array_eq(2, r2, roots, 1.e-15);
}
UT_REGISTER_TEST(test_quadratic_formula);
static bool test_cubic_formula(void)
{
const complex double roots[3] = { 1., 0.5, -2.i };
complex double coeff[4];
polynom_from_roots(3, coeff, roots);
complex double r2[3];
cubic_formula(r2, coeff);
return array_eq(3, r2, roots, 1.E-15);
}
UT_REGISTER_TEST(test_cubic_formula);
|