1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
from __future__ import (absolute_import, division, print_function)
# exercise all the projections by plotting
# etopo bathymetry/topography over them, plus
# drawing coastlines, state and
# country boundaries, filling continents and drawing
# parallels/meridians
from mpl_toolkits.basemap import Basemap, cm, shiftgrid
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
cmap = cm.GMT_haxby # colormap to use
# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
topodat = np.loadtxt('etopo20data.gz')
lons = np.loadtxt('etopo20lons.gz')
lats = np.loadtxt('etopo20lats.gz')
lons, lats = np.meshgrid(lons, lats)
print('min/max etopo20 data:')
print(topodat.min(),topodat.max())
# create new figure
fig=plt.figure()
# setup cylindrical equidistant map projection (global domain).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='cyl')
# plot image over map.
im = m.pcolormesh(lons,lats,topodat,cmap=cmap,latlon=True)
m.colorbar() # draw colorbar
m.drawcoastlines()
# draw parallels
m.drawparallels(np.arange(-90,90,30),labels=[1,0,0,1])
# draw meridians
m.drawmeridians(np.arange(0,360,60),labels=[1,0,0,1])
plt.title('Cylindrical Equidistant')
print('plotting Cylindrical Equidistant example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup miller cylindrical map projection.
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='mill')
# plot image over map.
im = m.pcolormesh(lons,lats,topodat,cmap=cmap,latlon=True)
m.colorbar(location='bottom',pad='7%') # draw colorbar
m.drawcoastlines() # draw coastlines
# draw parallels and meridiands
m.drawparallels(np.arange(-90,90,30),labels=[1,0,0,1])
m.drawmeridians(np.arange(0,360,60),labels=[1,0,0,1])
plt.title('Miller Cylindrical')
print('plotting Miller Cylindrical example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup gall stereographic cylindrical map projection.
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='gall')
# plot image over map.
im = m.pcolormesh(lons,lats,topodat,cmap=cmap,latlon=True)
cb = m.colorbar() # draw colorbar
m.drawcoastlines() # draw coastlines
# draw parallels and meridiands
m.drawparallels(np.arange(-90,90,30),labels=[1,0,0,1])
m.drawmeridians(np.arange(0,360,60),labels=[1,0,0,1])
plt.title('Gall Stereographic Cylindrical',y=1.1)
print('plotting Gall Stereographic Cylindrical example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup cylindrical equal area map projection.
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,lat_ts=30,projection='cea')
# plot image over map.
im = m.pcolormesh(lons,lats,topodat,cmap=cmap,latlon=True)
cb = m.colorbar() # draw colorbar
m.drawcoastlines() # draw coastlines
# draw parallels and meridiands
m.drawparallels(np.arange(-90,90,30),labels=[1,0,0,1])
m.drawmeridians(np.arange(0,360,60),labels=[1,0,0,1])
plt.title('Cylindrical Equal Area',y=1.1)
print('plotting Cylindrical Equal Area example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup mercator map projection (-80 to +80).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-75,urcrnrlon=180.,urcrnrlat=75.,\
resolution='c',area_thresh=10000.,projection='merc',lat_ts=20)
# plot image over map.
im = m.pcolormesh(lons,lats,topodat,cmap=cmap,latlon=True)
cb = m.colorbar() # draw colorbar
m.drawcoastlines() # draw coastlines
m.drawstates() # draw state boundaries
m.fillcontinents() # fill continents
# draw parallels and meridiands
m.drawparallels(np.arange(-90,90,30),labels=[1,0,0,1])
m.drawmeridians(np.arange(0,360,60),labels=[1,0,0,1])
plt.title('Mercator',y=1.1)
print('plotting Mercator example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup cassini-soldner basemap.
m = Basemap(llcrnrlon=-6,llcrnrlat=49,urcrnrlon=4,urcrnrlat=59,\
resolution='l',area_thresh=1000.,projection='cass',\
lat_0=54.,lon_0=-2.)
# plot image over map.
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
# shift data so lons go from -180 to 180 instead of 20 to 380.
datamap,lonsmap = shiftgrid(180.,topodat,lons[0,:],start=False)
topomap = m.transform_scalar(datamap,lonsmap,lats[:,0],nx,ny)
# plot image over map.
im = m.imshow(topomap,cmap)
m.colorbar() # draw colorbar
m.drawcoastlines()
# draw parallels
delat = 2.
circles = np.arange(40.,70.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 2.
meridians = np.arange(-10,10,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Cassini-Soldner Projection')
print('plotting Cassini-Soldner example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup gnomonic basemap.
m = Basemap(llcrnrlon=-95.,llcrnrlat=-52,urcrnrlon=-35.,urcrnrlat=15.,\
resolution='c',area_thresh=10000.,projection='gnom',\
lat_0=-10.,lon_0=-60.)
cs = m.contourf(lons,lats,topodat,np.arange(-6500,5000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar() # draw colorbar
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = np.arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 20.
meridians = np.arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Gnomonic Projection')
print('plotting Gnomonic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup transverse mercator basemap.
m = Basemap(llcrnrlon=-6,llcrnrlat=49,urcrnrlon=4,urcrnrlat=59,\
resolution='l',area_thresh=1000.,projection='tmerc',\
lat_0=54.,lon_0=-2.)
# plot image over map.
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
# shift data so lons go from -180 to 180 instead of 20 to 380.
datamap,lonsmap = shiftgrid(180.,topodat,lons[0,:],start=False)
topomap = m.transform_scalar(datamap,lonsmap,lats[:,0],nx,ny)
# plot image over map.
im = m.imshow(topomap,cmap)
m.colorbar() # draw colorbar
m.drawcoastlines()
# draw parallels
delat = 2.
circles = np.arange(40.,70.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 2.
meridians = np.arange(-10,10,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Transverse Mercator Projection')
print('plotting Transverse Mercator example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup oblique mercator basemap.
m = Basemap(height=16700000,width=12000000,
resolution='l',area_thresh=1000.,projection='omerc',\
lon_0=-100,lat_0=15,lon_2=-120,lat_2=65,lon_1=-50,lat_1=-55)
# plot image over map.
cs = m.contourf(lons,lats,topodat,np.arange(-6500,5000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar() # draw colorbar
m.drawcoastlines()
m.drawcountries()
m.drawstates()
# draw parallels
m.drawparallels(np.arange(-80,81,20),labels=[1,0,0,0],fontsize=10)
# draw meridians
m.drawmeridians(np.arange(-180,181,30),labels=[0,0,0,1],fontsize=10)
plt.title('Oblique Mercator Projection')
print('plotting Oblique Mercator example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup polyconic basemap.
m = Basemap(llcrnrlon=-35.,llcrnrlat=-30,urcrnrlon=80.,urcrnrlat=50.,\
resolution='c',area_thresh=1000.,projection='poly',\
lat_0=0.,lon_0=20.)
# plot image over map.
cs = m.contourf(lons,lats,topodat,np.arange(-6500,5000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar() # draw colorbar
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = np.arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,0],fontsize=10)
# draw meridians
delon = 20.
meridians = np.arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Polyconic Projection')
print('plotting Polyconic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup equidistant conic
m = Basemap(llcrnrlon=-90.,llcrnrlat=18,urcrnrlon=-70.,urcrnrlat=26.,\
resolution='l',area_thresh=1000.,projection='eqdc',\
lat_1=21.,lat_2=23.,lon_0=-80.)
# plot image over map.
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
# shift data so lons go from -180 to 180 instead of 20 to 380.
datamap,lonsmap = shiftgrid(180.,topodat,lons[0,:],start=False)
topomap = m.transform_scalar(datamap,lonsmap,lats[:,0],nx,ny)
# plot image over map.
im = m.imshow(topomap,cmap)
m.colorbar() # draw colorbar
m.drawcoastlines()
m.drawcountries()
m.drawstates()
m.fillcontinents(color='olive')
# draw parallels
delat = 2.
circles = np.arange(17,27,delat)
m.drawparallels(circles,labels=[1,0,0,0])
# draw meridians
delon = 5.
meridians = np.arange(-100,-60,delon)
m.drawmeridians(meridians,labels=[0,0,0,1])
plt.title('Equidistant Conic')
print('plotting Equidistant Conic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup lambert conformal map projection (North America).
m = Basemap(llcrnrlon=-145.5,llcrnrlat=1,urcrnrlon=-2.566,urcrnrlat=46.352,\
resolution='c',area_thresh=10000.,projection='lcc',\
lat_1=50.,lon_0=-107.)
# plot image over map.
cs = m.contourf(lons,lats,topodat,np.arange(-6500,5000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar(pad='10%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
delat = 20.
circles = np.arange(0.,90.+delat,delat).tolist()+\
np.arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,0,1])
# draw meridians
delon = 30.
meridians = np.arange(10.,360.,delon)
m.drawmeridians(meridians,labels=[1,1,0,1])
plt.title('Lambert Conformal Conic')
print('plotting Lambert Conformal example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup albers equal area map projection (Europe).
m = Basemap(llcrnrlon=-10.,llcrnrlat=20,urcrnrlon=55.,urcrnrlat=75,\
resolution='l',projection='aea',\
lat_1=40.,lat_2=60,lon_0=35.)
# plot image over map.
cs = m.contourf(lons,lats,topodat,np.arange(-4000,3000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar(pad='10%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = np.arange(0.,90.+delat,delat).tolist()+\
np.arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
delon = 30.
meridians = np.arange(10.,360.,delon)
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Albers Equal Area Conic',y=1.075)
print('plotting Albers Equal Area example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup stereographic map projection (Southern Hemisphere).
#m = Basemap(llcrnrlon=120.,llcrnrlat=0.,urcrnrlon=-60.,urcrnrlat=0.,\
# resolution='c',area_thresh=10000.,projection='stere',\
# lat_0=-90.,lon_0=75.,lat_ts=-90.)
# this is equivalent, but simpler.
m = Basemap(lon_0=75.,boundinglat=-20,
resolution='c',area_thresh=10000.,projection='spstere')
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(pad='12%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Square Polar Stereographic',y=1.075)
print('plotting Square Stereographic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
m = Basemap(lon_0=75.,boundinglat=-20,
resolution='c',area_thresh=10000.,projection='spstere',round=True)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(pad='12%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
#m.fillcontinents()
# draw parallels.
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Round Polar Stereographic',y=1.075)
print('plotting Round Stereographic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup lambert azimuthal map projection (Northern Hemisphere).
m = Basemap(llcrnrlon=-150.,llcrnrlat=-18.,urcrnrlon=30.,urcrnrlat=--18.,\
resolution='c',area_thresh=10000.,projection='laea',\
lat_0=90.,lon_0=-105.)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(pad='12%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Square Lambert Azimuthal Equal Area',y=1.075)
print('plotting Square Lambert Azimuthal example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
m = Basemap(projection = 'rotpole',lon_0 = -120.,\
o_lon_p = 180, o_lat_p = 0,\
llcrnry = -41.75, urcrnry = 37.75,\
llcrnrx = 137, urcrnrx = 222.5, resolution = 'l')
m.drawcoastlines()
ny,nx = lons.shape
m.contourf(lons[ny//2:,:],lats[ny//2:,:],topodat[ny//2:,:],50,cmap=cmap,extend='both',latlon=True)
m.drawmeridians(np.arange(-180,180,20),labels=[1,1,1,1])
m.drawparallels(np.arange(20,80,20))
m.colorbar()
plt.title('Rotated Pole',y=1.075)
print('plotting Rotated Pole example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
m = Basemap(lon_0=-105,boundinglat=20.,
resolution='c',area_thresh=10000.,projection='nplaea',round=True)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(pad='12%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels.
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Round Lambert Azimuthal Equal Area',y=1.075)
print('plotting Round Lambert Azimuthal example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup azimuthal equidistant map projection (Northern Hemisphere).
#m = Basemap(llcrnrlon=-150.,llcrnrlat=40.,urcrnrlon=30.,urcrnrlat=40.,\
# resolution='c',area_thresh=10000.,projection='aeqd',\
# lat_0=90.,lon_0=-105.)
# this is equivalent, but simpler.
m = Basemap(lon_0=-105,boundinglat=55.,
resolution='c',area_thresh=10000.,projection='npaeqd')
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
m.colorbar(pad='12%') # draw colorbar
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Azimuthal Equidistant',y=1.075)
print('plotting Azimuthal Equidistant example ...')
print(m.proj4string)
# projections with elliptical boundaries (orthographic, sinusoidal,
# mollweide and robinson)
# create new figure
fig=plt.figure()
# setup of basemap ('ortho' = orthographic projection)
m = Basemap(projection='ortho',
resolution='c',area_thresh=10000.,lat_0=30,lon_0=-60)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar() # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians (labelling is
# not implemented for orthographic).
parallels = np.arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = np.arange(0.,360.,20.)
m.drawmeridians(meridians)
# draw boundary around map region.
plt.title('Orthographic')
print('plotting Orthographic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('geos' = geostationary projection)
m = Basemap(projection='geos',
rsphere=(6378137.00,6356752.3142),\
resolution='c',area_thresh=10000.,lon_0=0,satellite_height=35785831)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar() # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians (labelling is
# not implemented for geostationary).
parallels = np.arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = np.arange(0.,360.,20.)
m.drawmeridians(meridians)
# draw boundary around map region.
plt.title('Geostationary')
print('plotting Geostationary example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of sinusoidal ('sinu' = sinusioidal projection)
m = Basemap(projection='sinu',
resolution='c',area_thresh=10000.,lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,30.)
m.drawmeridians(meridians)
# draw boundary around map region.
plt.title('Sinusoidal')
print('plotting Sinusoidal example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('moll' = mollweide projection)
m = Basemap(projection='moll',
resolution='c',area_thresh=10000.,lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,30.)
m.drawmeridians(meridians)
# draw boundary around map region.
plt.title('Mollweide')
print('plotting Mollweide example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('hammer' = Hammer projection)
m = Basemap(projection='hammer',
resolution='c',area_thresh=10000.,lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,30.)
m.drawmeridians(meridians)
# draw boundary around map region.
plt.title('Hammer')
print('plotting Hammer example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('robin' = robinson projection)
m = Basemap(projection='robin',
resolution='c',area_thresh=10000.,lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom',pad='10%') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,60.)
m.drawmeridians(meridians,labels=[0,0,0,1])
# draw boundary around map region.
plt.title('Robinson')
print('plotting Robinson example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('kav7' = Kavrayskiy VII projection)
m = Basemap(projection='kav7',
resolution='c',area_thresh=10000.,lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom',pad='10%') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,60.)
m.drawmeridians(meridians,labels=[0,0,0,1])
# draw boundary around map region.
plt.title('Kavrayskiy VII')
print('plotting Kavrayskiy VII example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('eck4' = Eckert IV projection)
m = Basemap(projection='eck4',
resolution='c',area_thresh=10000.,lon_0=0)
cs = m.contourf(lons,lats,topodat,50,cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom',pad='10%') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,60.)
m.drawmeridians(meridians,labels=[0,0,0,1])
# draw boundary around map region.
plt.title('Eckert IV')
print('plotting Eckert IV example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# setup of basemap ('mbtfpq' = McBryde-Thomas Flat Polar Quartic projection)
m = Basemap(projection='mbtfpq',
resolution='c',area_thresh=10000.,lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,np.arange(-6500,5000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar(location='bottom') # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,60.)
m.drawmeridians(meridians,labels=[0,0,0,1],fontsize=8)
# draw boundary around map region.
plt.title('McBryde-Thomas Flat Polar Quartic')
print('plotting McBryde-Thomas Flat Polar Quartic example ...')
print(m.proj4string)
# create new figure
fig=plt.figure()
# create Basemap instance for van der Grinten projection.
m = Basemap(projection='vandg',lon_0=0)
# plot image over map.
cs = m.contourf(lons,lats,topodat,np.arange(-6500,5000,50),cmap=cmap,extend='both',latlon=True)
m.colorbar() # draw colorbar
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = np.arange(0.,360.,60.)
m.drawmeridians(meridians)
# draw boundary around map region.
# add a title.
plt.title('van der Grinten')
print('plotting van der Grinten example ...')
print(m.proj4string)
plt.show()
print('done')
|